Reversible suppression of circadian-driven locomotor rhythms in mice using a gradual fragmentation of the day-night cycle.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
02 09 2023
02 09 2023
Historique:
received:
28
11
2022
accepted:
21
08
2023
medline:
4
9
2023
pubmed:
3
9
2023
entrez:
2
9
2023
Statut:
epublish
Résumé
Circadian rhythms are regulated by molecular clockwork and drive 24-h behaviors such as locomotor activity, which can be rendered non-functional through genetic knockouts of clock genes. Circadian rhythms are robust in constant darkness (DD) but are modulated to become exactly 24 h by the external day-night cycle. Whether ill-timed light and dark exposure can render circadian behaviors non-functional to the extent of genetic knockouts is less clear. In this study, we discovered an environmental approach that led to a reduction or lack in rhythmic 24-h-circadian wheel-running locomotor behavior in mice (referred to as arrhythmicity). We first observed behavioral circadian arrhythmicity when mice were gradually exposed to a previously published disruptive environment called the fragmented day-night cycle (FDN-G), while maintaining activity alignment with the four dispersed fragments of darkness. Remarkably, upon exposure to constant darkness (DD) or constant light (LL), FDN-G mice lost any resemblance to the FDN-G-only phenotype and instead, exhibited sporadic activity bursts. Circadian rhythms are maintained in control mice with sudden FDN exposure (FDN-S) and fully restored in FDN-G mice either spontaneously in DD or after 12 h:12 h light-dark exposure. This is the first study to generate a light-dark environment that induces reversible suppression of circadian locomotor rhythms in mice.
Identifiants
pubmed: 37660212
doi: 10.1038/s41598-023-41029-0
pii: 10.1038/s41598-023-41029-0
pmc: PMC10475134
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
14423Informations de copyright
© 2023. Springer Nature Limited.
Références
Curr Biol. 2017 Apr 3;27(7):1055-1061
pubmed: 28343966
J Comp Physiol A. 2001 Dec;187(10):793-800
pubmed: 11800036
Nat Neurosci. 2005 Mar;8(3):267-9
pubmed: 15746913
Biology (Basel). 2020 Jul 21;9(7):
pubmed: 32708259
J Vis Exp. 2013 Jan 24;(71):
pubmed: 23380887
J Biol Rhythms. 2021 Apr;36(2):196-199
pubmed: 33238802
Somnologie (Berl). 2019 Sep;23(3):147-156
pubmed: 31534436
Sci Rep. 2018 Oct 26;8(1):15343
pubmed: 30367119
Lab Anim. 2016 Feb;50(1):21-9
pubmed: 25979911
Sci Rep. 2019 Dec 27;9(1):20114
pubmed: 31882641
Nature. 2012 Nov 22;491(7425):594-8
pubmed: 23151476
Biol Rhythm Res. 1999;30(2):149-77
pubmed: 11708361
Behav Brain Res. 2013 Sep 1;252:1-9
pubmed: 23714074
PLoS Comput Biol. 2021 Jan 6;17(1):e1008567
pubmed: 33406069
Curr Protoc Mouse Biol. 2015 Sep 01;5(3):271-281
pubmed: 26331760
BMC Neurosci. 2005 Jun 20;6:41
pubmed: 15967036
J Biol Rhythms. 2004 Dec;19(6):530-41
pubmed: 15523114
Clocks Sleep. 2019 Jul 04;1(3):290-305
pubmed: 33089170
Curr Biol. 2012 Feb 21;22(4):314-9
pubmed: 22264613
Chronobiol Int. 1997 Jan;14(1):9-18
pubmed: 9042547
Sci Rep. 2022 May 5;12(1):7366
pubmed: 35513413
J Biol Rhythms. 2006 Jun;21(3):169-76
pubmed: 16731656
Z Tierpsychol. 1979 Mar;49(3):225-49
pubmed: 386643
Cold Spring Harb Symp Quant Biol. 1960;25:325-32
pubmed: 13762942
Neurobiol Aging. 2012 Jun;33(6):1122.e11-22
pubmed: 22154820
J Neurosci. 2008 Nov 12;28(46):11839-47
pubmed: 19005049
Clocks Sleep. 2019 Aug 26;1(3):394-413
pubmed: 33089177
Nat Commun. 2022 Aug 23;13(1):4652
pubmed: 35999195
Science. 2000 Oct 27;290(5492):799-801
pubmed: 11052942
Sci Rep. 2016 Dec 08;6:38479
pubmed: 27929128
Methods Enzymol. 2005;393:230-9
pubmed: 15817291
J Biol Rhythms. 2017 Jun;32(3):187-194
pubmed: 28569118
Am J Physiol. 1999 May;276(5):R1390-6
pubmed: 10233032
Front Neurosci. 2021 Apr 08;15:642376
pubmed: 33897354
Biology (Basel). 2019 Mar 21;8(1):
pubmed: 30901884
Physiol Behav. 2022 Sep 1;253:113851
pubmed: 35609722
Yale J Biol Med. 2019 Jun 27;92(2):187-199
pubmed: 31249479
Proc Natl Acad Sci U S A. 2017 May 2;114(18):E3699-E3708
pubmed: 28416676
Biol Proced Online. 2005;7:101-16
pubmed: 16136228
Elife. 2014 Dec 19;3:
pubmed: 25525750
J Biol Rhythms. 2003 Dec;18(6):502-12
pubmed: 14667151
Sci Rep. 2021 Sep 9;11(1):17929
pubmed: 34504149
Pediatr Res. 2006 Sep;60(3):304-8
pubmed: 16857759
J Pineal Res. 2020 Jan;68(1):e12614
pubmed: 31599473
Sci Rep. 2015 Sep 15;5:14044
pubmed: 26370467
Commun Biol. 2021 Jun 18;4(1):761
pubmed: 34145388
Lab Anim. 1998 Jul;32(3):233-59
pubmed: 9718472
J Biol Rhythms. 2004 Jun;19(3):198-207
pubmed: 15155006
Biol Rhythm Res. 2007;38(4):275-325
pubmed: 23710111
Proc Natl Acad Sci U S A. 1968 Feb;59(2):414-21
pubmed: 5238974
Behav Brain Res. 2021 Sep 10;413:113453
pubmed: 34252503
Physiol Behav. 2016 Oct 1;164(Pt A):113-22
pubmed: 27241632
Chronobiol Int. 1999 Jul;16(4):415-29
pubmed: 10442236
Physiol Behav. 1998 Jan;63(2):171-6
pubmed: 9423955
PLoS One. 2013 Nov 20;8(11):e80615
pubmed: 24278295
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2004 Aug;190(8):631-9
pubmed: 15127217
Proc Natl Acad Sci U S A. 2008 Dec 16;105(50):19998-20003
pubmed: 19060203
Eur J Neurosci. 2020 Jun;51(12):2329-2342
pubmed: 30044021