Experimental investigation and quantitative prediction in interference-fit size of CFRP riveted joints under a transversal ultrasonic vibration-assisted riveting.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
02 Sep 2023
02 Sep 2023
Historique:
received:
08
04
2023
accepted:
29
08
2023
medline:
3
9
2023
pubmed:
3
9
2023
entrez:
2
9
2023
Statut:
epublish
Résumé
In this study, a transversal ultrasonic vibration-assisted riveting (TUVAR) process was developed to improve the uniformity of CFRP riveted lap joint interference-fit size, which provided a possibility for the quantization of riveted joint interference-fit sizes. The relationship between the process parameters of vibration amplitude, vibration duration, and roughness with interference-fit sizes by algorithms, through the minimum coefficient variance of interference-fit size (I
Identifiants
pubmed: 37660225
doi: 10.1038/s41598-023-41578-4
pii: 10.1038/s41598-023-41578-4
pmc: PMC10475123
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
14408Subventions
Organisme : the Basic Science Research Project of Jiangsu Province Program
ID : 22KJB460008
Organisme : Suqian Sci&Tech Program
ID : K202210
Organisme : Suqian Sci&Tech program
ID : Z2021139
Organisme : Suqian Sci&Tech program
ID : K202114
Organisme : Suqian Sci&Tech program
ID : H202215
Commentaires et corrections
Type : ErratumIn
Informations de copyright
© 2023. Springer Nature Limited.
Références
Deng, J. H., Tang, C., Fu, M. W. & Zhan, Y. R. Effect of discharge voltage on the deformation of Ti Grade 1 rivet in electromagnetic riveting. Mater. Sci. Eng., A 591, 26–32 (2014).
doi: 10.1016/j.msea.2013.10.084
Zhang, X., Zhang, M., Sun, L. & Li, C. Numerical simulation and experimental investigations on TA1 titanium alloy rivet in electromagnetic riveting. Arch. Civil Mech. Eng. 18(3), 887–901 (2018).
doi: 10.1016/j.acme.2018.01.003
Mao, Q., Coutris, N., Rack, H., Fadel, G. & Gibert, J. Investigating ultrasound-induced acoustic softening in aluminum and its alloys. Ultrasonics 102, 106005 (2019).
doi: 10.1016/j.ultras.2019.106005
pubmed: 31756650
Wang, X., Qi, Z. & Chen, W. Investigation of mechanical and microstructural characteristics of Ti-45Nb undergoing transversal ultrasonic vibration-assisted upsetting. Mater. Sci. Eng. A 813, 141169 (2021).
doi: 10.1016/j.msea.2021.141169
Lou, Y., Liu, X., He, J. & Long, M. Ultrasonic-assisted extrusion of ZK60Mg alloy micropins at room temperature. Ultrasonics 83, 194–202 (2018).
doi: 10.1016/j.ultras.2017.03.012
pubmed: 28347508
Hung, J.-C. & Lin, C.-C. Investigations on the material property changes of ultrasonic-vibration assisted aluminum alloy upsetting. Mater. Des. 45, 412–420 (2013).
doi: 10.1016/j.matdes.2012.07.021
Hu, J., Shimizu, T., Yoshino, T., Shiratori, T. & Yang, M. Ultrasonic dynamic impact effect on deformation of aluminum during micro-compression tests. J. Mater. Process. Technol. 258, 144–154 (2018).
doi: 10.1016/j.jmatprotec.2018.03.021
Zhou, H., Cui, H. & Qin, Q. H. Influence of ultrasonic vibration on the plasticity of metals during compression process. J. Mater. Process. Technol. 251, 146–159 (2018).
doi: 10.1016/j.jmatprotec.2017.08.021
Djavanroodi, F., Ahmadian, H., Naseri, R., Koohkan, K. & Ebrahimi, M. Experimental investigation of ultrasonic assisted equal channel angular pressing process. Arch. Civil Mech. Eng. 16(3), 249–255 (2016).
doi: 10.1016/j.acme.2015.10.001
Zhuang, X.-C., Wang, J.-P., Zheng, H. & Zhao, Z. Forming mechanism of ultrasonic vibration assisted compression. Trans. Nonferr. Metals Soc. China 25(7), 2352–60 (2015).
doi: 10.1016/S1003-6326(15)63850-X
Jiang, H. et al. Fatigue response of electromagnetic riveted joints with different rivet dies subjected to pull-out loading. Int. J. Fatigue 129, 105238 (2019).
doi: 10.1016/j.ijfatigue.2019.105238
Wei, J., Jiao, G., Jia, P. & Huang, T. The effect of interference fit size on the fatigue life of bolted joints in composite laminates. Compos. B Eng. 53, 62–68 (2013).
doi: 10.1016/j.compositesb.2013.04.048
Li, J., Zhang, K., Li, Y., Liu, P. & Xia, J. Influence of interference-fit size on bearing fatigue response of single-lap carbon fiber reinforced polymer/Ti alloy bolted joints. Tribol. Int. 93, 151–162 (2016).
doi: 10.1016/j.triboint.2015.08.044
Hu, J. et al. An experimental study on mechanical response of single-lap bolted CFRP composite interference-fit joints. Compos. Struct. 196, 76–88 (2018).
doi: 10.1016/j.compstruct.2018.05.016
Skorupa, M., Skorupa, A., Machniewicz, T. & Korbel, A. Effect of production variables on the fatigue behaviour of riveted lap joints. Int. J. Fatigue 32(7), 996–1003 (2010).
doi: 10.1016/j.ijfatigue.2009.11.007
Cui, J. J., Qi, L., Jiang, H., Li, G. Y. & Zhang, X. Numerical and experimental investigations in electromagnetic riveting with different rivet dies. Int.J. Mater. Form. 11, 839–853 (2018).
doi: 10.1007/s12289-017-1394-z
Wang, Z. et al. Optimization of riveting parameters using Kriging and particle swarm optimization to improve deformation homogeneity in aircraft assembly. Adv. Mech. Eng. 9(8), 1–13 (2017).
doi: 10.1177/1687814017719003
Cao, Z. & Cardew-Hall, M. Interference-fit riveting technique in fiber composite laminates. Aerosp. Sci. Technol. 10(4), 327–330 (2006).
doi: 10.1016/j.ast.2005.11.003
Cao, Z. & Zuo, Y. Electromagnetic riveting technique and its applications. Chin. J. Aeronaut. 33(1), 5–15 (2020).
doi: 10.1016/j.cja.2018.12.023
Deng, J. H., Yu, H. P. & Li, C. F. Numerical and experimental investigation of electromagnetic riveting. Mater. Sci. Eng. A 499(1–2), 242–247 (2009).
doi: 10.1016/j.msea.2008.05.049
D5961. Standard test method for bearing response of polymer–matrix composite laminates. Composite materials Vol. 15.03 (ASTM International, 2005).
Kiani, J., Camp, C. & Pezeshk, S. On the application of machine learning techniques to derive seismic fragility curves. Comput. Struct. 218, 108–122 (2019).
doi: 10.1016/j.compstruc.2019.03.004
Kiani, J., Camp, C., Pezeshk, S. & Khoshnevis, N. Application of pool-based active learning in reducing the number of required response history analyses. Comput. Struct. 241, 106355 (2020).
doi: 10.1016/j.compstruc.2020.106355
Wang, X., Qi, Z., Chen, W. & Yao, C. Study on the effects of transverse ultrasonic vibration on deformation mechanism and mechanical properties of riveted lap joints. Ultrasonics 116, 106452 (2021).
doi: 10.1016/j.ultras.2021.106452
pubmed: 34116409
Shang, X. et al. Review on techniques to improve the strength of adhesive joints with composite adherends. Compos. B Eng. 177, 107363 (2019).
doi: 10.1016/j.compositesb.2019.107363
Song, D. et al. Stress distribution modeling for interference-fit area of each individual layer around composite laminates joint. Compos. Part B Eng. 78, 469–479 (2015).
doi: 10.1016/j.compositesb.2015.04.013
Wang, X., Qi, Z. & Chen, W. Study on constitutive behavior of Ti–45Nb alloy under transversal ultrasonic vibration-assisted com-pression. Arch. Civ. Mech. Eng. 21, 31 (2021).
doi: 10.1007/s43452-021-00186-7