Experimental investigation and quantitative prediction in interference-fit size of CFRP riveted joints under a transversal ultrasonic vibration-assisted riveting.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
02 Sep 2023
Historique:
received: 08 04 2023
accepted: 29 08 2023
medline: 3 9 2023
pubmed: 3 9 2023
entrez: 2 9 2023
Statut: epublish

Résumé

In this study, a transversal ultrasonic vibration-assisted riveting (TUVAR) process was developed to improve the uniformity of CFRP riveted lap joint interference-fit size, which provided a possibility for the quantization of riveted joint interference-fit sizes. The relationship between the process parameters of vibration amplitude, vibration duration, and roughness with interference-fit sizes by algorithms, through the minimum coefficient variance of interference-fit size (I

Identifiants

pubmed: 37660225
doi: 10.1038/s41598-023-41578-4
pii: 10.1038/s41598-023-41578-4
pmc: PMC10475123
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

14408

Subventions

Organisme : the Basic Science Research Project of Jiangsu Province Program
ID : 22KJB460008
Organisme : Suqian Sci&Tech Program
ID : K202210
Organisme : Suqian Sci&Tech program
ID : Z2021139
Organisme : Suqian Sci&Tech program
ID : K202114
Organisme : Suqian Sci&Tech program
ID : H202215

Commentaires et corrections

Type : ErratumIn

Informations de copyright

© 2023. Springer Nature Limited.

Références

Deng, J. H., Tang, C., Fu, M. W. & Zhan, Y. R. Effect of discharge voltage on the deformation of Ti Grade 1 rivet in electromagnetic riveting. Mater. Sci. Eng., A 591, 26–32 (2014).
doi: 10.1016/j.msea.2013.10.084
Zhang, X., Zhang, M., Sun, L. & Li, C. Numerical simulation and experimental investigations on TA1 titanium alloy rivet in electromagnetic riveting. Arch. Civil Mech. Eng. 18(3), 887–901 (2018).
doi: 10.1016/j.acme.2018.01.003
Mao, Q., Coutris, N., Rack, H., Fadel, G. & Gibert, J. Investigating ultrasound-induced acoustic softening in aluminum and its alloys. Ultrasonics 102, 106005 (2019).
doi: 10.1016/j.ultras.2019.106005 pubmed: 31756650
Wang, X., Qi, Z. & Chen, W. Investigation of mechanical and microstructural characteristics of Ti-45Nb undergoing transversal ultrasonic vibration-assisted upsetting. Mater. Sci. Eng. A 813, 141169 (2021).
doi: 10.1016/j.msea.2021.141169
Lou, Y., Liu, X., He, J. & Long, M. Ultrasonic-assisted extrusion of ZK60Mg alloy micropins at room temperature. Ultrasonics 83, 194–202 (2018).
doi: 10.1016/j.ultras.2017.03.012 pubmed: 28347508
Hung, J.-C. & Lin, C.-C. Investigations on the material property changes of ultrasonic-vibration assisted aluminum alloy upsetting. Mater. Des. 45, 412–420 (2013).
doi: 10.1016/j.matdes.2012.07.021
Hu, J., Shimizu, T., Yoshino, T., Shiratori, T. & Yang, M. Ultrasonic dynamic impact effect on deformation of aluminum during micro-compression tests. J. Mater. Process. Technol. 258, 144–154 (2018).
doi: 10.1016/j.jmatprotec.2018.03.021
Zhou, H., Cui, H. & Qin, Q. H. Influence of ultrasonic vibration on the plasticity of metals during compression process. J. Mater. Process. Technol. 251, 146–159 (2018).
doi: 10.1016/j.jmatprotec.2017.08.021
Djavanroodi, F., Ahmadian, H., Naseri, R., Koohkan, K. & Ebrahimi, M. Experimental investigation of ultrasonic assisted equal channel angular pressing process. Arch. Civil Mech. Eng. 16(3), 249–255 (2016).
doi: 10.1016/j.acme.2015.10.001
Zhuang, X.-C., Wang, J.-P., Zheng, H. & Zhao, Z. Forming mechanism of ultrasonic vibration assisted compression. Trans. Nonferr. Metals Soc. China 25(7), 2352–60 (2015).
doi: 10.1016/S1003-6326(15)63850-X
Jiang, H. et al. Fatigue response of electromagnetic riveted joints with different rivet dies subjected to pull-out loading. Int. J. Fatigue 129, 105238 (2019).
doi: 10.1016/j.ijfatigue.2019.105238
Wei, J., Jiao, G., Jia, P. & Huang, T. The effect of interference fit size on the fatigue life of bolted joints in composite laminates. Compos. B Eng. 53, 62–68 (2013).
doi: 10.1016/j.compositesb.2013.04.048
Li, J., Zhang, K., Li, Y., Liu, P. & Xia, J. Influence of interference-fit size on bearing fatigue response of single-lap carbon fiber reinforced polymer/Ti alloy bolted joints. Tribol. Int. 93, 151–162 (2016).
doi: 10.1016/j.triboint.2015.08.044
Hu, J. et al. An experimental study on mechanical response of single-lap bolted CFRP composite interference-fit joints. Compos. Struct. 196, 76–88 (2018).
doi: 10.1016/j.compstruct.2018.05.016
Skorupa, M., Skorupa, A., Machniewicz, T. & Korbel, A. Effect of production variables on the fatigue behaviour of riveted lap joints. Int. J. Fatigue 32(7), 996–1003 (2010).
doi: 10.1016/j.ijfatigue.2009.11.007
Cui, J. J., Qi, L., Jiang, H., Li, G. Y. & Zhang, X. Numerical and experimental investigations in electromagnetic riveting with different rivet dies. Int.J. Mater. Form. 11, 839–853 (2018).
doi: 10.1007/s12289-017-1394-z
Wang, Z. et al. Optimization of riveting parameters using Kriging and particle swarm optimization to improve deformation homogeneity in aircraft assembly. Adv. Mech. Eng. 9(8), 1–13 (2017).
doi: 10.1177/1687814017719003
Cao, Z. & Cardew-Hall, M. Interference-fit riveting technique in fiber composite laminates. Aerosp. Sci. Technol. 10(4), 327–330 (2006).
doi: 10.1016/j.ast.2005.11.003
Cao, Z. & Zuo, Y. Electromagnetic riveting technique and its applications. Chin. J. Aeronaut. 33(1), 5–15 (2020).
doi: 10.1016/j.cja.2018.12.023
Deng, J. H., Yu, H. P. & Li, C. F. Numerical and experimental investigation of electromagnetic riveting. Mater. Sci. Eng. A 499(1–2), 242–247 (2009).
doi: 10.1016/j.msea.2008.05.049
D5961. Standard test method for bearing response of polymer–matrix composite laminates. Composite materials Vol. 15.03 (ASTM International, 2005).
Kiani, J., Camp, C. & Pezeshk, S. On the application of machine learning techniques to derive seismic fragility curves. Comput. Struct. 218, 108–122 (2019).
doi: 10.1016/j.compstruc.2019.03.004
Kiani, J., Camp, C., Pezeshk, S. & Khoshnevis, N. Application of pool-based active learning in reducing the number of required response history analyses. Comput. Struct. 241, 106355 (2020).
doi: 10.1016/j.compstruc.2020.106355
Wang, X., Qi, Z., Chen, W. & Yao, C. Study on the effects of transverse ultrasonic vibration on deformation mechanism and mechanical properties of riveted lap joints. Ultrasonics 116, 106452 (2021).
doi: 10.1016/j.ultras.2021.106452 pubmed: 34116409
Shang, X. et al. Review on techniques to improve the strength of adhesive joints with composite adherends. Compos. B Eng. 177, 107363 (2019).
doi: 10.1016/j.compositesb.2019.107363
Song, D. et al. Stress distribution modeling for interference-fit area of each individual layer around composite laminates joint. Compos. Part B Eng. 78, 469–479 (2015).
doi: 10.1016/j.compositesb.2015.04.013
Wang, X., Qi, Z. & Chen, W. Study on constitutive behavior of Ti–45Nb alloy under transversal ultrasonic vibration-assisted com-pression. Arch. Civ. Mech. Eng. 21, 31 (2021).
doi: 10.1007/s43452-021-00186-7

Auteurs

Xingxing Wang (X)

College of Mechanical and Electrical Engineering, Suqian University, Suqian No. 399, Sucheng District, Huanghe Street, Suqian, 223800, China. wangxx@squ.edu.cn.
College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China. wangxx@squ.edu.cn.

Yunyang Shi (Y)

College of Mechanical and Electrical Engineering, Suqian University, Suqian No. 399, Sucheng District, Huanghe Street, Suqian, 223800, China.

Haicheng Pan (H)

College of Mechanical and Electrical Engineering, Suqian University, Suqian No. 399, Sucheng District, Huanghe Street, Suqian, 223800, China.

Yegao Chen (Y)

College of Mechanical and Electrical Engineering, Suqian University, Suqian No. 399, Sucheng District, Huanghe Street, Suqian, 223800, China.

Classifications MeSH