Untargeted metabolomic analysis investigating links between unprocessed red meat intake and markers of inflammation.
BMI
C-reactive protein
Red meat
adiposity
biomarker
inflammation
metabolome-wide association study
metabolomics
Journal
The American journal of clinical nutrition
ISSN: 1938-3207
Titre abrégé: Am J Clin Nutr
Pays: United States
ID NLM: 0376027
Informations de publication
Date de publication:
11 2023
11 2023
Historique:
received:
31
01
2023
revised:
21
08
2023
accepted:
30
08
2023
medline:
6
11
2023
pubmed:
4
9
2023
entrez:
3
9
2023
Statut:
ppublish
Résumé
Whether red meat consumption is associated with higher inflammation or confounded by increased adiposity remains unclear. Plasma metabolites capture the effects of diet after food is processed, digested, and absorbed, and correlate with markers of inflammation, so they can help clarify diet-health relationships. To identify whether any metabolites associated with red meat intake are also associated with inflammation. A cross-sectional analysis of observational data from older adults (52.84% women, mean age 63 ± 0.3 y) participating in the Multi-Ethnic Study of Atherosclerosis (MESA). Dietary intake was assessed by food-frequency questionnaire, alongside C-reactive protein (CRP), interleukin-2, interleukin-6, fibrinogen, homocysteine, and tumor necrosis factor alpha, and untargeted proton nuclear magnetic resonance ( In analyses that adjust for BMI, neither processed nor unprocessed forms of red meat were associated with any markers of inflammation (all P > 0.01). However, when adjusting for BMI, unprocessed red meat was inversely associated with spectral features representing the metabolite glutamine (sentinel hit: β = -0.09 ± 0.02, P = 2.0 × 10 Our analyses were unable to support a relationship between either processed or unprocessed red meat and inflammation, over and above any confounding by BMI. Glutamine, a plasma correlate of lower unprocessed red meat intake, was associated with lower CRP levels. The differences in diet-inflammation associations, compared with diet metabolite-inflammation associations, warrant further investigation to understand the extent that these arise from the following: 1) a reduction in measurement error with metabolite measures; 2) the extent that which factors other than unprocessed red meat intake contribute to glutamine levels; and 3) the ability of plasma metabolites to capture individual differences in how food intake is metabolized.
Sections du résumé
BACKGROUND
Whether red meat consumption is associated with higher inflammation or confounded by increased adiposity remains unclear. Plasma metabolites capture the effects of diet after food is processed, digested, and absorbed, and correlate with markers of inflammation, so they can help clarify diet-health relationships.
OBJECTIVE
To identify whether any metabolites associated with red meat intake are also associated with inflammation.
METHODS
A cross-sectional analysis of observational data from older adults (52.84% women, mean age 63 ± 0.3 y) participating in the Multi-Ethnic Study of Atherosclerosis (MESA). Dietary intake was assessed by food-frequency questionnaire, alongside C-reactive protein (CRP), interleukin-2, interleukin-6, fibrinogen, homocysteine, and tumor necrosis factor alpha, and untargeted proton nuclear magnetic resonance (
RESULTS
In analyses that adjust for BMI, neither processed nor unprocessed forms of red meat were associated with any markers of inflammation (all P > 0.01). However, when adjusting for BMI, unprocessed red meat was inversely associated with spectral features representing the metabolite glutamine (sentinel hit: β = -0.09 ± 0.02, P = 2.0 × 10
CONCLUSIONS
Our analyses were unable to support a relationship between either processed or unprocessed red meat and inflammation, over and above any confounding by BMI. Glutamine, a plasma correlate of lower unprocessed red meat intake, was associated with lower CRP levels. The differences in diet-inflammation associations, compared with diet metabolite-inflammation associations, warrant further investigation to understand the extent that these arise from the following: 1) a reduction in measurement error with metabolite measures; 2) the extent that which factors other than unprocessed red meat intake contribute to glutamine levels; and 3) the ability of plasma metabolites to capture individual differences in how food intake is metabolized.
Identifiants
pubmed: 37660929
pii: S0002-9165(23)66116-7
doi: 10.1016/j.ajcnut.2023.08.018
pii:
doi:
Substances chimiques
Glutamine
0RH81L854J
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
989-999Subventions
Organisme : NCATS NIH HHS
ID : UL1 TR001881
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL105756
Pays : United States
Informations de copyright
Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.