Busulfan induces steatosis in HepaRG cells but not in primary human hepatocytes: Possible explanations and implication for the prediction of drug-induced liver injury.

drug-induced liver injury endoplasmic reticulum stress glutathione S-transferase prediction steatosis very low-density lipoprotein

Journal

Fundamental & clinical pharmacology
ISSN: 1472-8206
Titre abrégé: Fundam Clin Pharmacol
Pays: England
ID NLM: 8710411

Informations de publication

Date de publication:
04 Sep 2023
Historique:
revised: 27 07 2023
received: 23 01 2023
accepted: 10 08 2023
medline: 4 9 2023
pubmed: 4 9 2023
entrez: 4 9 2023
Statut: aheadofprint

Résumé

The antineoplastic drug busulfan can induce different hepatic lesions including cholestasis and sinusoidal obstruction syndrome. However, hepatic steatosis has never been reported in patients. This study aimed to determine whether busulfan could induce steatosis in primary human hepatocytes (PHH) and differentiated HepaRG cells. Neutral lipids were determined in PHH and HepaRG cells. Mechanistic investigations were performed in HepaRG cells by measuring metabolic fluxes linked to lipid homeostasis, reduced glutathione (GSH) levels, and expression of genes involved in lipid metabolism and endoplasmic reticulum (ER) stress. Analysis of two previous transcriptomic datasets was carried out. Busulfan induced lipid accumulation in HepaRG cells but not in six different batches of PHH. In HepaRG cells, busulfan impaired VLDL secretion, increased fatty acid uptake, and induced ER stress. Transcriptomic data analysis and decreased GSH levels suggested that busulfan-induced steatosis might be linked to the high expression of glutathione S-transferase (GST) isoenzyme A1, which is responsible for the formation of the hepatotoxic sulfonium cation conjugate. In keeping with this, the GST inhibitor ethacrynic acid and the chemical chaperone tauroursodeoxycholic acid alleviated busulfan-induced lipid accumulation in HepaRG cells supporting the role of the sulfonium cation conjugate and ER stress in steatosis. While the HepaRG cell line is an invaluable tool for pharmacotoxicological studies, it might not be always an appropriate model to predict and mechanistically investigate drug-induced liver injury. Hence, we recommend carrying out toxicological investigations in both HepaRG cells and PHH to avoid drawing wrong conclusions on the potential hepatotoxicity of drugs and other xenobiotics.

Sections du résumé

BACKGROUND BACKGROUND
The antineoplastic drug busulfan can induce different hepatic lesions including cholestasis and sinusoidal obstruction syndrome. However, hepatic steatosis has never been reported in patients.
OBJECTIVES OBJECTIVE
This study aimed to determine whether busulfan could induce steatosis in primary human hepatocytes (PHH) and differentiated HepaRG cells.
METHODS METHODS
Neutral lipids were determined in PHH and HepaRG cells. Mechanistic investigations were performed in HepaRG cells by measuring metabolic fluxes linked to lipid homeostasis, reduced glutathione (GSH) levels, and expression of genes involved in lipid metabolism and endoplasmic reticulum (ER) stress. Analysis of two previous transcriptomic datasets was carried out.
RESULTS RESULTS
Busulfan induced lipid accumulation in HepaRG cells but not in six different batches of PHH. In HepaRG cells, busulfan impaired VLDL secretion, increased fatty acid uptake, and induced ER stress. Transcriptomic data analysis and decreased GSH levels suggested that busulfan-induced steatosis might be linked to the high expression of glutathione S-transferase (GST) isoenzyme A1, which is responsible for the formation of the hepatotoxic sulfonium cation conjugate. In keeping with this, the GST inhibitor ethacrynic acid and the chemical chaperone tauroursodeoxycholic acid alleviated busulfan-induced lipid accumulation in HepaRG cells supporting the role of the sulfonium cation conjugate and ER stress in steatosis.
CONCLUSION CONCLUSIONS
While the HepaRG cell line is an invaluable tool for pharmacotoxicological studies, it might not be always an appropriate model to predict and mechanistically investigate drug-induced liver injury. Hence, we recommend carrying out toxicological investigations in both HepaRG cells and PHH to avoid drawing wrong conclusions on the potential hepatotoxicity of drugs and other xenobiotics.

Identifiants

pubmed: 37665028
doi: 10.1111/fcp.12951
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Agence Nationale de la Recherche
ID : ANR-16-CE18-0010 MITOXDRUGS

Informations de copyright

© 2023 The Authors. Fundamental & Clinical Pharmacology published by John Wiley & Sons Ltd on behalf of Société Française de Pharmacologie et de Thérapeutique.

Références

Levêque D, Becker G. The role of therapeutic drug monitoring in the management of safety of anticancer agents: a focus on 3 cytotoxics. Expert Opin Drug Saf. 2019;18(11):1009-1015. doi:10.1080/14740338.2019.1662395
Myers AL, Kawedia JD, Champlin RE, et al. Clarifying busulfan metabolism and drug interactions to support new therapeutic drug monitoring strategies: a comprehensive review. Expert Opin Drug Metab Toxicol. 2017;13(9):901-923. doi:10.1080/17425255.2017.1360277
ten Brink MH, Zwaveling J, Swen JJ, Bredius RG, Lankester AC, Guchelaar HJ. Personalized busulfan and treosulfan conditioning for pediatric stem cell transplantation: the role of pharmacogenetics and pharmacokinetics. Drug Discov Today. 2014;19(10):1572-1586. doi:10.1016/j.drudis.2014.04.005
DeLeve LD, Wang X. Role of oxidative stress and glutathione in busulfan toxicity in cultured murine hepatocytes. Pharmacology. 2000;60(3):143-154. doi:10.1159/000028359
Czerwinski M, Gibbs JP, Slattery JT. Busulfan conjugation by glutathione S-transferases alpha, mu, and pi. Drug Metab Dispos. 1996;24(9):1015-1019.
Huezo-Diaz P, S. Uppugunduri C, Tyagi AK, Krajinovic M, Ansari M. Pharmacogenetic aspects of drug metabolizing enzymes in busulfan based conditioning prior to allogenic hematopoietic stem cell transplantation in children. Curr Drug Metab. 2014;15(3):251-264. doi:10.2174/1389200215666140202214012
Ansari M, Curtis PH, Uppugunduri CRS, et al. GSTA1 diplotypes affect busulfan clearance and toxicity in children undergoing allogeneic hematopoietic stem cell transplantation: a multicenter study. Oncotarget. 2017;8(53):90852-90867. doi:10.18632/oncotarget.20310
Kim MG, Kwak A, Choi B, Ji E, Oh JM, Kim K. Effect of glutathione S-transferase genetic polymorphisms on busulfan pharmacokinetics and veno-occlusive disease in hematopoietic stem cell transplantation: a meta-analysis. Basic Clin Pharmacol Toxicol. 2019;124(6):691-703. doi:10.1111/bcpt.13185
Michaud V, Tran M, Pronovost B, et al. Impact of GSTA1 polymorphisms on busulfan oral clearance in adult patients undergoing hematopoietic stem cell transplantation. Pharmaceutics. 2019;11(9):440. doi:10.3390/pharmaceutics11090440
McCune JS, Holmberg LA. Busulfan in hematopoietic stem cell transplant setting. Expert Opin Drug Metab Toxicol. 2009;5(8):957-969. doi:10.1517/17425250903107764
Biour M, Ben Salem C, Chazouillères O, Grangé JD, Serfati L, Poupon R. Drug-induced liver injury; fourteenth updated edition of the bibliographic database of liver injuries and related drugs. Gastroenterol Clin Biol. 2004;28(8-9):720-759. doi:10.1016/S0399-8320(04)95062-2
LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. National Institute of Diabetes and Digestive and Kidney Diseases; 2012. Last update for busulfan: October 2, 2017. https://www.ncbi.nlm.nih.gov/books/NBK547852
Bouligand J, Deroussent A, Simonnard N, et al. Induction of glutathione synthesis explains pharmacodynamics of high-dose busulfan in mice and highlights putative mechanisms of drug interaction. Drug Metab Dispos. 2007;35(2):306-314. doi:10.1124/dmd.106.012880
Puri EC, Baumeister M, Fautz R, et al. Inter-laboratory ring trial of in vitro DNA repair tests using rat hepatocytes: further testing and conclusive remarks. Mutagenesis. 1991;6(6):471-478. doi:10.1093/mutage/6.6.471
Allard J, Bucher S, Massart J, et al. Drug-induced hepatic steatosis in absence of severe mitochondrial dysfunction in HepaRG cells: proof of multiple mechanism-based toxicity. Cell Biol Toxicol. 2021;37(2):151-175. doi:10.1007/s10565-020-09537-1
Anthérieu S, Rogue A, Fromenty B, Guillouzo A, Robin MA. Induction of vesicular steatosis by amiodarone and tetracycline is associated with up-regulation of lipogenic genes in HepaRG cells. Hepatology. 2011;53(6):1895-1905. doi:10.1002/hep.24290
Grünig D, Szabo L, Marbet M, Krähenbühl S. Valproic acid affects fatty acid and triglyceride metabolism in HepaRG cells exposed to fatty acids by different mechanisms. Biochem Pharmacol. 2020;177:113860. doi:10.1016/j.bcp.2020.113860
Tolosa L, Gómez-Lechón MJ, Jiménez N, Hervás D, Jover R, Donato MT. Advantageous use of HepaRG cells for the screening and mechanistic study of drug-induced steatosis. Toxicol Appl Pharmacol. 2016;302:1-9. doi:10.1016/j.taap.2016.04.007
Gripon P, Rumin S, Urban S, et al. Infection of a human hepatoma cell line by hepatitis B virus. Proc Natl Acad Sci U S A. 2002;99(24):15655-15660. doi:10.1073/pnas.232137699
Greenspan P, Mayer EP, Fowler SD. Nile red: a selective fluorescent stain for intracellular lipid droplets. J Cell Biol. 1985;100(3):965-973. doi:10.1083/jcb.100.3.965
Bucher S, Le Guillou D, Allard J, et al. Possible involvement of mitochondrial dysfunction and oxidative stress in a cellular model of NAFLD progression induced by benzo[a]pyrene/ethanol CoExposure. Oxid Med Cell Longev. 2018;2018:4396403. doi:10.1155/2018/4396403
Fromenty B, Lettéron P, Fisch C, Berson A, Deschamps D, Pessayre D. Evaluation of human blood lymphocytes as a model to study the effects of drugs on human mitochondria. Effects of low concentrations of amiodarone on fatty acid oxidation, ATP levels and cell survival. Biochem Pharmacol. 1993;46(3):421-432. doi:10.1016/0006-2952(93)90518-2
Jossé R, Rogue A, Lambert C. Early target genes of aflatoxin B1 in human hepatic cells. NCBI, gene expression omnibus (GEO) database, December 07, 2010, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25844
Rogue A. Inter-individual variability in gene expression profiles in human hepatocytes and comparison with HepaRG cells. NCBI, gene expression omnibus (GEO) database, October 01, 2015, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE41289
GEO2R interactive web tool, NCBI, https://www.ncbi.nlm.nih.gov/geo/info/geo2r.html
González R, Ferrín G, Hidalgo AB, et al. N-acetylcysteine, coenzyme Q10 and superoxide dismutase mimetic prevent mitochondrial cell dysfunction and cell death induced by d-galactosamine in primary culture of human hepatocytes. Chem Biol Interact. 2009;181(1):95-106. doi:10.1016/j.cbi.2009.06.003
Knight TR, Jaeschke H. Acetaminophen-induced inhibition of Fas receptor-mediated liver cell apoptosis: mitochondrial dysfunction versus glutathione depletion. Toxicol Appl Pharmacol. 2002;181(2):133-141. doi:10.1006/taap.2002.9407
Lee KK, Fujimoto K, Zhang C, et al. Isoniazid-induced cell death is precipitated by underlying mitochondrial complex I dysfunction in mouse hepatocytes. Free Radic Biol Med. 2013;65:584-594. doi:10.1016/j.freeradbiomed.2013.07.038
Gu X, Albrecht W, Edlund K, et al. Relevance of the incubation period in cytotoxicity testing with primary human hepatocytes. Arch Toxicol. 2018;92(12):3505-3515. doi:10.1007/s00204-018-2302-0
Ploemen JH, van Ommen B, van Bladeren PJ. Inhibition of rat and human glutathione S-transferase isoenzymes by ethacrynic acid and its glutathione conjugate. Biochem Pharmacol. 1990;40(7):1631-1635. doi:10.1016/0006-2952(90)90465-W
Tew KD, Dutta S, Schultz M. Inhibitors of glutathione S-transferases as therapeutic agents. Adv Drug Deliv Rev. 1997;26(2-3):91-104. doi:10.1016/S0169-409X(97)00029-X
Madden T, de Lima M, Thapar N, et al. Pharmacokinetics of once-daily IV busulfan as part of pretransplantation preparative regimens: a comparison with an every 6-hour dosing schedule. Biol Blood Marrow Transplant. 2007;13(1):56-64. doi:10.1016/j.bbmt.2006.08.037
Russell JA, Tran HT, Quinlan D, et al. Once-daily intravenous busulfan given with fludarabine as conditioning for allogeneic stem cell transplantation: study of pharmacokinetics and early clinical outcomes. Biol Blood Marrow Transplant. 2002;8(9):468-476. doi:10.1053/bbmt.2002.v8.pm12374451
Porceddu M, Buron N, Roussel C, Labbe G, Fromenty B, Borgne-Sanchez A. Prediction of liver injury induced by chemicals in human with a multiparametric assay on isolated mouse liver mitochondria. Toxicol Sci. 2012;129(2):332-345. doi:10.1093/toxsci/KFS197
Xu JJ, Henstock PV, Dunn MC, Smith AR, Chabot JR, de Graaf D. Cellular imaging predictions of clinical drug-induced liver injury. Toxicol Sci. 2008;105(1):97-105. doi:10.1093/toxsci/kfn109
Maurel M, Chevet E, Tavernier J, Gerlo S. Getting RIDD of RNA: IRE1 in cell fate regulation. Trends Biochem Sci. 2014;39(5):245-254. doi:10.1016/j.tibs.2014.02.008
Qiu W, Zhang J, Dekker MJ, et al. Hepatic autophagy mediates endoplasmic reticulum stress-induced degradation of misfolded apolipoprotein B. Hepatology. 2011;53(5):1515-1525. doi:10.1002/hep.24269
Wu X, Xu N, Li M, et al. Protective effect of patchouli alcohol against high-fat diet induced hepatic steatosis by alleviating endoplasmic reticulum stress and regulating VLDL metabolism in rats. Front Pharmacol. 2019;10:1134. doi:10.3389/fphar.2019.01134
Choi YJ, Shin HS, Choi HS, et al. Uric acid induces fat accumulation via generation of endoplasmic reticulum stress and SREBP-1c activation in hepatocytes. Lab Invest. 2014;94(10):1114-1125. doi:10.1038/labinvest.2014.98
Lebeaupin C, Vallée D, Hazari Y, Hetz C, Chevet E, Bailly-Maitre B. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease. J Hepatol. 2018;69(4):927-947. doi:10.1016/j.jhep.2018.06.008
Wang J, Hu R, Yin C, Xiao Y. Tanshinone IIA reduces palmitate-induced apoptosis via inhibition of endoplasmic reticulum stress in HepG2 liver cells. Fundam Clin Pharmacol. 2020;34(2):249-262. doi:10.1111/fcp.12510
Hubel E, Fishman S, Holopainen M, et al. Repetitive amiodarone administration causes liver damage via adipose tissue ER stress-dependent lipolysis, leading to hepatotoxic free fatty acid accumulation. Am J Physiol Gastrointest Liver Physiol. 2021;321(3):G298-G307. doi:10.1152/ajpgi.00458.2020
Kim SH, Seo H, Kwon D, Yuk DY, Jung YS. Taurine ameliorates tunicamycin-induced liver injury by disrupting the vicious cycle between oxidative stress and endoplasmic reticulum stress. Life (Basel). 2022;12(3):354. doi:10.3390/life12030354
Zheng X, Dai W, Chen X, et al. Caffeine reduces hepatic lipid accumulation through regulation of lipogenesis and ER stress in zebrafish larvae. J Biomed Sci. 2015;22(1):105. doi:10.1186/s12929-015-0206-3
Häussinger D, Kordes C. Mechanisms of tauroursodeoxycholate-mediated hepatoprotection. Dig Dis. 2017;35(3):224-231. doi:10.1159/000450915
Kusaczuk M. Tauroursodeoxycholate-bile acid with chaperoning activity: molecular and cellular effects and therapeutic perspectives. Cell. 2019;8(12):1471. doi:10.3390/cells8121471
Rodrigues CM, Solá S, Sharpe JC, Moura JJ, Steer CJ. Tauroursodeoxycholic acid prevents Bax-induced membrane perturbation and cytochrome c release in isolated mitochondria. Biochemistry. 2003;42(10):3070-3080. doi:10.1021/bi026979d
Sokol RJ, Dahl R, Devereaux MW, Yerushalmi B, Kobak GE, Gumpricht E. Human hepatic mitochondria generate reactive oxygen species and undergo the permeability transition in response to hydrophobic bile acids. J Pediatr Gastroenterol Nutr. 2005;41(2):235-243. doi:10.1097/01.MPG.0000170600.80640.88
Schott MB, Rasineni K, Weller SG, et al. β-Adrenergic induction of lipolysis in hepatocytes is inhibited by ethanol exposure. J Biol Chem. 2017;292(28):11815-11828. doi:10.1074/jbc.M117.777748
Sahini N, Borlak J. Recent insights into the molecular pathophysiology of lipid droplet formation in hepatocytes. Prog Lipid Res. 2014;54:86-112. doi:10.1016/j.plipres.2014.02.002
Santos-Baez LS, Ginsberg HN. Nonalcohol fatty liver disease: balancing supply and utilization of triglycerides. Curr Opin Lipidol. 2021;32(3):200-206. doi:10.1097/MOL.0000000000000756
Zhu X, Xiong T, Liu P, et al. Quercetin ameliorates HFD-induced NAFLD by promoting hepatic VLDL assembly and lipophagy via the IRE1a/XBP1s pathway. Food Chem Toxicol. 2018;114:52-60. doi:10.1016/j.fct.2018.02.019
Flessa CM, Kyrou I, Nasiri-Ansari N, et al. Endoplasmic reticulum stress and autophagy in the pathogenesis of non-alcoholic fatty liver disease (NAFLD): current evidence and perspectives. Curr Obes Rep. 2021;10(2):134-161. doi:10.1007/s13679-021-00431-3
Cui Y, Ren L, Li B, et al. Melatonin relieves busulfan-induced spermatogonial stem cell apoptosis of mouse testis by inhibiting endoplasmic reticulum stress. Cell Physiol Biochem. 2018;44(6):2407-2421. doi:10.1159/000486165
Zhao J, Wang M, Wang Y, et al. Endoplasmic reticulum stress promotes blood-testis barrier impairment in mice with busulfan-induced oligospermia through PERK-eIF2α signaling pathway. Toxicology. 2022;473:153193. doi:10.1016/j.tox.2022.153193
Foufelle F, Fromenty B. Role of endoplasmic reticulum stress in drug-induced toxicity. Pharmacol Res Perspect. 2016;4(1):e00211. doi:10.1002/prp2.211
Kim SH, Kwon DY, Kwak JH, et al. Tunicamycin-induced ER stress is accompanied with oxidative stress via abrogation of sulfur amino acids metabolism in the liver. Int J Mol Sci. 2018;19(12):4114. doi:10.3390/ijms19124114
Sison-Young RL, Mitsa D, Jenkins RE, et al. Comparative proteomic characterization of 4 human liver-derived single cell culture models reveals significant variation in the capacity for drug disposition, bioactivation, and detoxication. Toxicol Sci. 2015;147(2):412-424. doi:10.1093/toxsci/kfv136
Matsuo Y, Hirota K. Transmembrane thioredoxin-related protein TMX1 is reversibly oxidized in response to protein accumulation in the endoplasmic reticulum. FEBS Open Bio. 2017;7(11):1768-1777. doi:10.1002/2211-5463.12319
Dickhout JG, Carlisle RE, Jerome DE, et al. Integrated stress response modulates cellular redox state via induction of cystathionine γ-lyase: cross-talk between integrated stress response and thiol metabolism. J Biol Chem. 2012;287(10):7603-7614. doi:10.1074/jbc.M111.304576
Lu SC. Dysregulation of glutathione synthesis in liver disease. Liver Res. 2020;4(2):64-73. doi:10.1016/j.livres.2020.05.003
Fromenty B. Inhibition of mitochondrial fatty acid oxidation in drug-induced hepatic steatosis. Liver Res. 2019;3(3-4):157-169. doi:10.1016/j.livres.2019.06.001
Massart J, Begriche K, Buron N, Porceddu M, Borgne-Sanchez A, Fromenty B. Drug-induced inhibition of mitochondrial fatty acid oxidation and steatosis. Curr Pathobiol Rep. 2013;1(3):147-157. doi:10.1007/s40139-013-0022-y
McIlwain CC, Townsend DM, Tew KD. Glutathione S-transferase polymorphisms: cancer incidence and therapy. Oncogene. 2006;25(11):1639-1648. doi:10.1038/sj.onc.1209373
Martínez-Guzmán C, Cortés-Reynosa P, Pérez-Salazar E, Elizondo G. Dexamethasone induces human glutathione S transferase alpha 1 (hGSTA1) expression through the activation of glucocorticoid receptor (hGR). Toxicology. 2017;385:59-66. doi:10.1016/j.tox.2017.05.002
Ng L, Nichols K, O'Rourke K, Maslen A, Kirby GM. Repression of human GSTA1 by interleukin-1beta is mediated by variant hepatic nuclear factor-1C. Mol Pharmacol. 2007;71(1):201-208. doi:10.1124/mol.106.028563
Higgins LG, Hayes JD. Mechanisms of induction of cytosolic and microsomal glutathione transferase (GST) genes by xenobiotics and pro-inflammatory agents. Drug Metab Rev. 2011;43(2):92-137. doi:10.3109/03602532.2011.567391
Irshad N, Khan AU, Shah FA, et al. Antihyperlipidemic effect of selected pyrimidine derivatives mediated through multiple pathways. Fundam Clin Pharmacol. 2021;35(6):1119-1132. doi:10.1111/fcp.12682
Tijjani H, Adebayo JO. Antioxidant activities of artesunate-procyanidin hybrid compound in erythrocyte and liver of plasmodium berghei NK65-infected mice. Fundam Clin Pharmacol. 2023;37(2):305-315. doi:10.1111/fcp.12846
Koob M, Dekant W. Bioactivation of xenobiotics by formation of toxic glutathione conjugates. Chem Biol Interact. 1991;77(2):107-136. doi:10.1016/0009-2797(91)90068-I
Dekant W. Biosynthesis of toxic glutathione conjugates from halogenated alkenes. Toxicol Lett. 2003;144(1):49-54. doi:10.1016/S0378-4274(02)00338-7
Anthérieu S, Azzi PBE, Dumont J, et al. Oxidative stress plays a major role in chlorpromazine-induced cholestasis in human HepaRG cells. Hepatology. 2013;57(4):1518-1529. doi:10.1002/hep.26160
Guguen-Guillouzo C, Guillouzo A. Setup and use of HepaRG cells in cholestasis research. Methods Mol Biol. 2019;1981:291-312. doi:10.1007/978-1-4939-9420-5_19
Le Guillou D, Bucher S, Begriche K, et al. Drug-induced alterations of mitochondrial DNA homeostasis in steatotic and nonsteatotic HepaRG cells. J Pharmacol Exp Ther. 2018;365(3):711-726. doi:10.1124/jpet.117.246751
McGill MR, Yan HM, Ramachandran A, Murray GJ, Rollins DE, Jaeschke H. HepaRG cells: a human model to study mechanisms of acetaminophen hepatotoxicity. Hepatology. 2011;53(3):974-982. doi:10.1002/hep.24132
Moradi E, Jalili-Firoozinezhad S, Solati-Hashjin M. Microfluidic organ-on-a-chip models of human liver tissue. Acta Biomater. 2020;116:67-83. doi:10.1016/j.actbio.2020.08.041
Zerdoug A, Le Vée M, Uehara S, et al. Contribution of humanized liver chimeric mice to the study of human hepatic drug transporters: state of the art and perspectives. Eur J Drug Metab Pharmacokinet. 2022;47(5):621-637. doi:10.1007/s13318-022-00782-9

Auteurs

Julien Allard (J)

Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.

Simon Bucher (S)

Scribe Therapeutics, Alameda, California, USA.

Pierre-Jean Ferron (PJ)

INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1317, Rennes, France.

Youenn Launay (Y)

INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1317, Rennes, France.

Bernard Fromenty (B)

INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1317, Rennes, France.

Classifications MeSH