Land use diversification may mitigate on-site land use impacts on mammal populations and assemblages.
agriculture
biodiversity
cropland
forest plantations
forestry
individual species abundance
intactness
land management
mean species abundance
species richness
Journal
Global change biology
ISSN: 1365-2486
Titre abrégé: Glob Chang Biol
Pays: England
ID NLM: 9888746
Informations de publication
Date de publication:
Nov 2023
Nov 2023
Historique:
revised:
07
08
2023
received:
22
11
2022
accepted:
21
08
2023
pubmed:
4
9
2023
medline:
4
9
2023
entrez:
4
9
2023
Statut:
ppublish
Résumé
Land use is a major cause of biodiversity decline worldwide. Agricultural and forestry diversification measures, such as the inclusion of natural elements or diversified crop types, may reduce impacts on biodiversity. However, the extent to which such measures may compensate for the negative impacts of land use remains unknown. To fill that gap, we synthesised data from 99 studies that recorded mammal populations or assemblages in natural reference sites and in cropland and forest plantations, with or without diversification measures. We quantified the responses to diversification measures based on individual species abundance, species richness and assemblage intactness as quantified by the mean species abundance indicator. In cropland with natural elements, mammal species abundance and richness were, on average, similar to natural conditions, while in cropland without natural elements they were reduced by 28% and 34%, respectively. We found that mammal species richness was comparable between diversified forest plantations and natural reference sites, and 32% lower in plantations without natural elements. In both cropland and plantations, assemblage intactness was reduced compared with natural reference conditions, but the reduction was smaller if diversification measures were in place. In addition, we found that responses to land use were modified by species traits and environmental context. While habitat specialist populations were reduced in cropland without diversification and in forest plantations, habitat generalists benefited. Furthermore, assemblages were impacted more by land use in tropical regions and landscapes containing a larger share of (semi)natural habitat compared with temperate regions and more converted landscapes. Given that mammal assemblage intactness is reduced also when diversification measures are in place, special attention should be directed to species that suffer from land use impacts. That said, our results suggest potential for reconciling land use and mammal conservation, provided that the diversification measures do not compromise yield.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
6234-6247Subventions
Organisme : HORIZON EUROPE Climate, Energy and Mobility
ID : 101056898
Organisme : HORIZON EUROPE Climate, Energy and Mobility
ID : 101060423
Organisme : Nederlandse Organisatie voor Wetenschappelijk Onderzoek
ID : 016.Vici.170.190
Organisme : Unilever
Informations de copyright
© 2023 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
Références
Alkemade, R., van Bussel, L. G., Rodríguez, S. L., & Schipper, A. M. (2022). Global biodiversity assessments need to consider mixed multifunctional land-use systems. Current Opinion in Environmental Sustainability, 56, 101174. https://doi.org/10.1016/j.cosust.2022.101174
Arneth, A., Denton, F., Agus, F., Elbehri, A., Erb, K., Elasha, B. O., Rahimi, M., Rounsevell, M., Spence, A., & Valentini, R. (2019). 1. Framing and context. In P. Shukla, J. Skea, E. C. Buendia, V. Masson-Delmotte, H.-O. Pörtner, D. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughley, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. P. Pereira, P. Vyas, E. Huntley, … J. Malley (Eds.), Climate change and land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems (pp. 77-129). IPCC. https://www.ipcc.ch/srccl/
Balmford, A. (2021). Concentrating vs. spreading our footprint: How to meet humanity's needs at least cost to nature. Journal of Zoology, 315(2), 79-109. https://doi.org/10.1111/jzo.12920
Barrios, E., Valencia, V., Jonsson, M., Brauman, A., Hairiah, K., Mortimer, P. E., & Okubo, S. (2018). Contribution of trees to the conservation of biodiversity and ecosystem services in agricultural landscapes. International Journal of Biodiversity Science, Ecosystem Services and Management, 14(1), 1-16. https://doi.org/10.1080/21513732.2017.1399167
Batáry, P., Báldi, A., Kleijn, D., & Tscharntke, T. (2011). Landscape-moderated biodiversity effects of agri-environmental management: A meta-analysis. Proceedings of the Royal Society B: Biological Sciences, 278(1713), 1894-1902. https://doi.org/10.1098/rspb.2010.1923
Bates, D., Mächler, M., Bolker, B. M., & Walker, S. C. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1-48. https://doi.org/10.18637/jss.v067.i01
Beckmann, M., Gerstner, K., Akin-Fajiye, M., Ceaușu, S., Kambach, S., Kinlock, N. L., Phillips, H. R. P., Verhagen, W., Gurevitch, J., Klotz, S., Newbold, T., Verburg, P. H., Winter, M., & Seppelt, R. (2019). Conventional land-use intensification reduces species richness and increases production: A global meta-analysis. Global Change Biology, 25(6), 1941-1956. https://doi.org/10.1111/gcb.14606
Beillouin, D., Ben-Ari, T., & Makowski, D. (2019). Evidence map of crop diversification strategies at the global scale. Environmental Research Letters, 14, 123001. https://doi.org/10.1088/1748-9326/ab5ffb
Bhagwat, S. A., Willis, K. J., Birks, H. J. B., & Whittaker, R. J. (2008). Agroforestry: A refuge for tropical biodiversity? Trends in Ecology & Evolution, 23(5), 261-267. https://doi.org/10.1016/j.tree.2008.01.005
Bommarco, R., Kleijn, D., & Potts, S. G. (2013). Ecological intensification: Harnessing ecosystem services for food security. Trends in Ecology & Evolution, 28(4), 230-238. https://doi.org/10.1016/j.tree.2012.10.012
Burgin, C. J., Colella, J. P., Kahn, P. L., & Upham, N. S. (2018). How many species of mammals are there? Journal of Mammalogy, 99(1), 1-14. https://doi.org/10.1093/jmammal/gyx147
CBD. (2022, December). Kunming-Montreal global biodiversity framework. https://www.cbd.int/doc/c/e6d3/cd1d/daf663719a03902a9b116c34/cop-15-l-25-en.pdf
Clark, M., & Tilman, D. (2017). Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environmental Research Letters, 12(6), 064016. https://doi.org/10.1088/1748-9326/aa6cd5
Clough, Y., Kirchweger, S., & Kantelhardt, J. (2020). Field sizes and the future of farmland biodiversity in European landscapes. Conservation Letters, 13(6), 1-12. https://doi.org/10.1111/conl.12752
Copernicus. (2022). Land cover classification gridded maps from 1992 to present derived from satellite observation. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). https://doi.org/10.24381/cds.006f2c9a
Dainese, M., Martin, E. A., Aizen, M. A., Albrecht, M., Bartomeus, I., Bommarco, R., Carvalheiro, L. G., Chaplin-Kramer, R., Gagic, V., Garibaldi, L. A., Ghazoul, J., Grab, H., Jonsson, M., Karp, D. S., Kennedy, C. M., Kleijn, D., Kremen, C., Landis, D. A., Letourneau, D. K., … Steffan-Dewenter, I. (2019). A global synthesis reveals biodiversity-mediated benefits for crop production. Science Advances, 5(10), 1-14. https://doi.org/10.1126/sciadv.aax0121
Davison, C. W., Rahbek, C., & Morueta-Holme, N. (2021). Land-use change and biodiversity: Challenges for assembling evidence on the greatest threat to nature. Global Change Biology, 27(21), 5414-5429. https://doi.org/10.1111/gcb.15846
Díaz, S., Settele, J., Brondízio, E. S., Ngo, H. T., Agard, J., Arneth, A., Balvanera, P., Brauman, K. A., Butchart, S. H. M., Chan, K. M. A., Lucas, A. G., Ichii, K., Liu, J., Subramanian, S. M., Midgley, G. F., Miloslavich, P., Molnár, Z., Obura, D., Pfaff, A., … Zayas, C. N. (2019). Pervasive human-driven decline of life on Earth points to the need for transformative change. Science, 366(6471), eaax3100. https://doi.org/10.1126/science.aax3100
Dornelas, M., Gotelli, N. J., McGill, B., Shimadzu, H., Moyes, F., Sievers, C., & Magurran, A. E. (2014). Assemblage time series reveal biodiversity change but not systematic loss. Science, 344(6181), 296-299. https://doi.org/10.1126/science.1248484
Dornelas, M., Gotelli, N. J., Shimadzu, H., Moyes, F., Magurran, A. E., & McGill, B. J. (2019). A balance of winners and losers in the Anthropocene. Ecology Letters, 22(5), 847-854. https://doi.org/10.1111/ele.13242
Ellis, E. C., Gauthier, N., Goldewijk, K. K., Bird, R. B., Boivin, N., Díaz, S., Fuller, D. Q., Gill, J. L., Kaplan, J. O., Kingston, N., Locke, H., McMichael, C. N. H., Ranco, D., Rick, T. C., Rebecca Shaw, M., Stephens, L., Svenning, J. C., & Watson, J. E. M. (2021). People have shaped most of terrestrial nature for at least 12,000 years. Proceedings of the National Academy of Sciences of the United States of America, 118(17), 1-8. https://doi.org/10.1073/pnas.2023483118
Estrada-Carmona, N., Sánchez, A. C., Remans, R., & Jones, S. K. (2022). Complex agricultural landscapes host more biodiversity than simple ones: A global meta-analysis. Proceedings of the National Academy of Sciences of the United States of America, 119(38), 1-10. https://doi.org/10.1073/pnas.2203385119
Faurby, S., Davis, M., Pedersen, R. Ø., Schowanek, S., Antonelly, A., & Svenning, J.-C. (2018). PHYLACINE 1.2: The phylogenetic atlas of mammal macroecology. Ecology, 99(11), 2626. https://doi.org/10.5061/dryad.bp26v20
Gonthier, D. J., Ennis, K. K., Farinas, S., Hsieh, H. Y., Iverson, A. L., Batáry, P., Rudolphi, J., Tscharntke, T., Cardinale, B. J., & Perfecto, I. (2014). Biodiversity conservation in agriculture requires a multi-scale approach. Proceedings of the Royal Society B: Biological Sciences, 281(1791), 9-14. https://doi.org/10.1098/rspb.2014.1358
Hillebrand, H., Blasius, B., Borer, E. T., Chase, J. M., Downing, J. A., Eriksson, B. K., Filstrup, C. T., Harpole, W. S., Hodapp, D., Larsen, S., Lewandowska, A. M., Seabloom, E. W., Van de Waal, D. B., & Ryabov, A. B. (2018). Biodiversity change is uncoupled from species richness trends: Consequences for conservation and monitoring. Journal of Applied Ecology, 55(1), 169-184. https://doi.org/10.1111/1365-2664.12959
Hudson, L. N., Newbold, T., Contu, S., Hill, S. L. L., Lysenko, I., De Palma, A., Phillips, H. R. P., Alhusseini, T. I., Bedford, F. E., Bennett, D. J., Booth, H., Burton, V. J., Chng, C. W. T., Choimes, A., Correia, D. L. P., Day, J., Echeverría-Londoño, S., Emerson, S. R., Gao, D., … Purvis, A. (2017). The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project. Ecology and Evolution, 7, 145-188. https://doi.org/10.1002/ece3.2579
IPBES. (2019). Global assessment report of the intergovernmental science-policy platform on biodiversity and ecosystem services. In E. S. Brondízio, J. Settele, S. Díaz, & H. T. Ngo (Eds.), Global assessment report of the intergovernmental science-policy platform on biodiversity and ecosystem services. IPBES Secretariat. https://ipbes.net/document-library-catalogue/global-assessment-report
IUCN. (2022). The IUCN Red List of Threatened Species. Version 2022-1. https://www.iucnredlist.org
Jones, S. K., Sánchez, A. C., Juventia, S. D., & Estrada-Carmona, N. (2021). A global database of diversified farming effects on biodiversity and yield. Scientific Data, 8(212), 1-6. https://doi.org/10.1038/s41597-021-01000-y
Kanowski, J., Catterall, C. P., & Wardell-Johnson, G. W. (2005). Consequences of broadscale timber plantations for biodiversity in cleared rainforest landscapes of tropical and subtropical Australia. Forest Ecology and Management, 208(1-3), 359-372. https://doi.org/10.1016/j.foreco.2005.01.018
Kremen, C., Iles, A., & Bacon, C. (2012). Diversified farming systems: An agroecological, systems-based alternative to modern industrial agriculture. Ecology and Society, 17(4), 170444. https://doi.org/10.5751/ES-05103-170444
Kremen, C., & Merenlender, A. M. (2018). Landscapes that work for biodiversity and people. Science, 362(304), eaau6020. https://doi.org/10.1126/science.aau6020
Kriegel, P., Matevski, D., & Schuldt, A. (2021). Monoculture and mixture-planting of non-native Douglas fir alters species composition, but promotes the diversity of ground beetles in a temperate forest system. Biodiversity and Conservation, 30(5), 1479-1499. https://doi.org/10.1007/s10531-021-02155-1
Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest package: Tests in linear mixed effects models. Journal of Statistical Software, 82(13), 1-26. https://doi.org/10.18637/JSS.V082.I13
Leclère, D., Obersteiner, M., Barrett, M., Butchart, S. H. M., Chaudhary, A., De Palma, A., DeClerck, F. A. J., Di Marco, M., Doelman, J. C., Dürauer, M., Freeman, R., Harfoot, M., Hasegawa, T., Hellweg, S., Hilbers, J. P., Hill, S. L. L., Humpenöder, F., Jennings, N., Krisztin, T., … Young, L. (2020). Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature, 585(7826), 551-556. https://doi.org/10.1038/s41586-020-2705-y
Leung, B., Hargreaves, A. L., Greenberg, D. A., McGill, B., Dornelas, M., & Freeman, R. (2020). Clustered versus catastrophic global vertebrate declines. Nature, 588, 267-271. https://doi.org/10.1038/s41586-020-2920-6
Lichtenberg, E. M., Kennedy, C. M., Kremen, C., Batáry, P., Berendse, F., Bommarco, R., Bosque-Pérez, N. A., Carvalheiro, L. G., Snyder, W. E., Williams, N. M., Winfree, R., Klatt, B. K., Åström, S., Benjamin, F., Brittain, C., Chaplin-Kramer, R., Clough, Y., Danforth, B., Diekötter, T., … Crowder, D. W. (2017). A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes. Global Change Biology, 23(11), 4946-4957. https://doi.org/10.1111/gcb.13714
Mace, G. M., Barrett, M., Burgess, N. D., Cornell, S. E., Freeman, R., Grooten, M., & Purvis, A. (2018). Aiming higher to bend the curve of biodiversity loss. Nature Sustainability, 1(9), 448-451. https://doi.org/10.1038/s41893-018-0130-0
Malhi, Y., Riutta, T., Wearn, O. R., Deere, N. J., Mitchell, S. L., Bernard, H., Majalap, N., Nilus, R., Davies, Z. G., Ewers, R. M., & Struebig, M. J. (2022). Logged tropical forests have amplified and diverse ecosystem energetics. Nature, 612, 707-713. https://doi.org/10.1038/s41586-022-05523-1
Maxwell, S. L., Fuller, R. A., Brooks, T. M., & Watson, J. E. M. (2016). Biodiversity: The ravages of guns, nets and bulldozers. Nature, 536(7615), 143-145. https://doi.org/10.1038/536143a
Midolo, G., Alkemade, R., Schipper, A. M., Benítez-López, A., Perring, M. P., & De Vries, W. (2019). Impacts of nitrogen addition on plant species richness and abundance: A global meta-analysis. Global Ecology and Biogeography, 28(3), 398-413. https://doi.org/10.1111/geb.12856
Nature Editorial. (2020). New biodiversity targets cannot afford to fail. Nature, 578(7795), 337-338.
Nelder, J. A. (1998). The selection of terms in response-surface models-how strong is the weak-heredity principle? The American Statistician, 52(4), 315. https://doi.org/10.2307/2685433
Newbold, T., Hudson, L. N., Arnell, A. P., Contu, S., De Palma, A., Ferrier, S., Hill, S. L. L., Hoskins, A. J., Lysenko, I., Phillips, H. R. P., Burton, V. J., Chng, C. W. T., Emerson, S., Gao, D., Pask-Hale, G., Hutton, J., Jung, M., Sanchez-Ortiz, K., Simmons, B. I., … Purvis, A. (2016). Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science, 535(6296), 288-291. https://doi.org/10.1126/science.aaf2201
Newbold, T., Hudson, L. N., Hill, S. L., Contu, S., Lysenko, I., Senior, R., a, Börger, L., Bennett, D. J., Choimes, A., Collen, B., Day, J., De Palma, A., Dıáz, S., Echeverria-Londoño, S., Edgar, M. J., Feldman, A., Garon, M., Harrison, M. L. K., Alhusseini, T., … Purvis, A. (2015). Global effects of land use on local terrestrial biodiversity. Nature, 520(14324), 45-50. https://doi.org/10.1038/nature14324
Newbold, T., Hudson, L. N., Hill, S. L. L., Contu, S., Gray, C. L., Scharlemann, J. P. W., Börger, L., Phillips, H. R. P., Sheil, D., Lysenko, I., & Purvis, A. (2016). Global patterns of terrestrial assemblage turnover within and among land uses. Ecography, 39(12), 1151-1163. https://doi.org/10.1111/ecog.01932
Newbold, T., Hudson, L. N., Phillips, H. R. P., Hill, S. L. L., Contu, S., Lysenko, I., Blandon, A., Butchart, S. H. M., Booth, H. L., Day, J., De Palma, A., Harrison, M. L. K., Kirkpatrick, L., Pynegar, E., Robinson, A., Simpson, J., Mace, G. M., Scharlemann, J. P. W., & Purvis, A. (2014). A global model of the response of tropical and sub-tropical forest biodiversity to anthropogenic pressures. Proceedings of the Royal Society B: Biological Sciences, 281(1792), 20141371. https://doi.org/10.1098/rspb.2014.1371
Newbold, T., Oppenheimer, P., Etard, A., & Williams, J. J. (2020). Tropical and Mediterranean biodiversity is disproportionately sensitive to land-use and climate change. Nature Ecology & Evolution., 4, 1630-1638. https://doi.org/10.1038/s41559-020-01303-0
Oakley, J. L., & Bicknell, J. E. (2022). The impacts of tropical agriculture on biodiversity: A meta-analysis. Journal of Applied Ecology, 59, 3072-3082. https://doi.org/10.1111/1365-2664.14303
Perfecto, I., & Vandermeer, J. (2010). The agroecological matrix as alternative to the land-sparing/agriculture intensification model. Proceedings of the National Academy of Sciences of the United States of America, 107(13), 5786-5791. https://doi.org/10.1073/pnas.0905455107
Phalan, B., Balmford, A., Green, R. E., & Scharlemann, J. P. W. (2011). Minimising the harm to biodiversity of producing more food globally. Food Policy, 36(Suppl. 1), S62-S71. https://doi.org/10.1016/j.foodpol.2010.11.008
Phalan, B., Onial, M., Balmford, A., & Green, R. E. (2011). Reconciling food production and biodiversity conservation: Land sharing and land sparing compared. Science, 333, 1289-1291. https://doi.org/10.1126/science.1208742
Ponisio, L. C., M'Gonigle, L. K., & Kremen, C. (2016). On-farm habitat restoration counters biotic homogenization in intensively managed agriculture. Global Change Biology, 22(2), 704-715. https://doi.org/10.1111/gcb.13117
Pretty, J., Benton, T. G., Bharucha, Z. P., Dicks, L. V., Flora, C. B., Godfray, H. C. J., Goulson, D., Hartley, S., Lampkin, N., Morris, C., Pierzynski, G., Prasad, P. V. V., Reganold, J., Rockström, J., Smith, P., Thorne, P., & Wratten, S. (2018). Global assessment of agricultural system redesign for sustainable intensification. Nature Sustainability, 1(8), 441-446. https://doi.org/10.1038/s41893-018-0114-0
R Core Team. (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org/
Ricciardi, V., Mehrabi, Z., Wittman, H., James, D., & Ramankutty, N. (2021). Higher yields and more biodiversity on smaller farms. Nature Sustainability, 4, 651-657. https://doi.org/10.1038/s41893-021-00699-2
Rosa-Schleich, J., Loos, J., Mußhoff, O., & Tscharntke, T. (2019). Ecological-economic trade-offs of diversified farming systems - A review. Ecological Economics, 160, 251-263. https://doi.org/10.1016/j.ecolecon.2019.03.002
Sánchez, A. C., Jones, S. K., Purvis, A., Estrada-Carmona, N., & De Palma, A. (2022). Landscape complexity and functional groups moderate the effect of diversified farming on biodiversity: A global meta-analysis. Agriculture, Ecosystems & Environment, 332, 107933. https://doi.org/10.1016/j.agee.2022.107933
Santini, L., Belmaker, J., Costello, M. J., Pereira, H. M., Rossberg, A. G., Schipper, A. M., Ceaușu, S., Dornelas, M., Hilbers, J. P., Hortal, J., Huijbregts, M. A. J., Navarro, L. M., Schiffers, K. H., Visconti, P., & Rondinini, C. (2017). Assessing the suitability of diversity metrics to detect biodiversity change. Biological Conservation, 213, 341-350. https://doi.org/10.1016/j.biocon.2016.08.024
Schipper, A. M., Belmaker, J., Miranda, M. D., Navarro, L. M., Böhning-Gaese, K., Costello, M. J., Dornelas, M., Foppen, R., Hortal, J., Huijbregts, M. A. J., Martín-López, B., Pettorelli, N., Queiroz, C., Rossberg, A. G., Santini, L., Schiffers, K., Steinmann, Z. J. N., Visconti, P., Rondinini, C., & Pereira, H. M. (2016). Contrasting changes in the abundance and diversity of North American bird assemblages from 1971 to 2010. Global Change Biology, 22(12), 3948-3959. https://doi.org/10.1111/gcb.13292
Schipper, A. M., Hilbers, J. P., Meijer, J., Antão, J., Benítez-López, A., de Jonge, M., Leemans, L., Scheper, E., Alkemade, R., Doelman, J., Mylius, S., Stehfest, E., van Vuuren, D., van Zeist, W., & Huijbregts, M. (2020). Projecting terrestrial biodiversity intactness with GLOBIO 4. Global Change Biology, 26(2), 760-771. https://doi.org/10.1111/gcb.14848
Seebens, H., Blackburn, T. M., Dyer, E. E., Genovesi, P., Hulme, P. E., Jeschke, J. M., Pagad, S., Pyšek, P., van Kleunen, M., Winter, M., Ansong, M., Arianoutsou, M., Bacher, S., Blasius, B., Brockerhoff, E. G., Brundu, G., Capinha, C., Causton, C. E., Celesti-Grapow, L., … Essl, F. (2018). Global rise in emerging alien species results from increased accessibility of new source pools. Proceedings of the National Academy of Sciences of the United States of America, 115(10), E2264-E2273. https://doi.org/10.1073/pnas.1719429115
Simonetti, J. A., Grez, A. A., & Estades, C. F. (2013). Providing habitat for native mammals through understory enhancement in forestry plantations. Conservation Biology, 27(5), 1117-1121. https://doi.org/10.1111/cobi.12129
Sirami, C., Gross, N., Baillod, A. B., Bertrand, C., Carrié, R., Hass, A., Henckel, L., Miguet, P., Vuillot, C., Alignier, A., Girard, J., Batáry, P., Clough, Y., Violle, C., Giralt, D., Bota, G., Badenhausser, I., Lefebvre, G., Gauffre, B., … Fahrig, L. (2019). Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions. Proceedings of the National Academy of Sciences of the United States of America, 116(33), 16442-16447. https://doi.org/10.1073/pnas.1906419116
Smithson, M., & Verkuilen, J. (2006). A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychological Methods, 11(1), 54-71. https://doi.org/10.1037/1082-989X.11.1.54
Soria, C. D., Pacifici, M., Di Marco, M., Stephen, S. M., & Rondinini, C. (2021). COMBINE: A coalesced mammal database of intrinsic and extrinsic traits. Ecology, 102(6), 13028255. https://doi.org/10.1002/ecy.3344
Tamburini, G., Bommarco, R., Wanger, T. C., Kremen, C., van der Heijden, M. G. A., Liebman, M., & Hallin, S. (2020). Agricultural diversification promotes multiple ecosystem services without compromising yield. Science Advances, 6(45), eaba1715. https://doi.org/10.1126/sciadv.aba1715
UN. (2019). The sustainable development goals report. United Nations Publications. https://doi.org/10.4324/9781315162935-11
Vellend, M., Baeten, L., Myers-Smith, I. H., Elmendorf, S. C., Beauséjour, R., Brown, C. D., De Frenne, P., Verheyen, K., & Wipf, S. (2013). Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proceedings of the National Academy of Sciences of the United States of America, 110(48), 19456-19459. https://doi.org/10.1073/pnas.1312779110
Watson, J. E. M., Evans, T., Venter, O., Williams, B., Tulloch, A., Stewart, C., Thompson, I., Ray, J. C., Murray, K., Salazar, A., McAlpine, C., Potapov, P., Walston, J., Robinson, J. G., Painter, M., Wilkie, D., Filardi, C., Laurance, W. F., Houghton, R. A., … Lindenmayer, D. (2018). The exceptional value of intact forest ecosystems. Nature Ecology & Evolution, 2(4), 599-610. https://doi.org/10.1038/s41559-018-0490-x
Williams, D. R., Alvarado, F., Green, R. E., Manica, A., Phalan, B., & Balmford, A. (2017). Land-use strategies to balance livestock production, biodiversity conservation and carbon storage in Yucatán, Mexico. Global Change Biology, 23(12), 5260-5272. https://doi.org/10.1111/gcb.13791
Williams, D. R., Clark, M., Buchanan, G. M., Ficetola, G. F., Rondinini, C., & Tilman, D. (2021). Proactive conservation to prevent habitat losses to agricultural expansion. Nature Sustainability, 4(4), 314-322. https://doi.org/10.1038/s41893-020-00656-5
Wilman, H., Belmaker, J., Simpson, J., de la Rosa, C., Rivadeneira, M. M., & Jetz, W. (2014). EltonTraits 1.0: Species-level foraging attributes of the world's birds and mammals. Ecology, 95(7), 2027. https://doi.org/10.1890/13-1917.1
Winkler, K., Fuchs, R., Rounsevell, M., & Herold, M. (2021). Global land use changes are four times greater than previously estimated. Nature Communications, 12(1), 2501. https://doi.org/10.1038/s41467-021-22702-2
WWF. (2020). Living planet report 2020 - Bending the curve of biodiversity loss. (R. E. A. Almond, M. Grooten, & T. Petersen, Eds.). WWF.