Localized Crystallization of Calcium Phosphates by Light-Induced Processes.
biomineralization
calcium phosphate
materials science
photo-induced crystallization
photochemistry
Journal
Chemistry (Weinheim an der Bergstrasse, Germany)
ISSN: 1521-3765
Titre abrégé: Chemistry
Pays: Germany
ID NLM: 9513783
Informations de publication
Date de publication:
01 Dec 2023
01 Dec 2023
Historique:
received:
02
08
2023
medline:
4
9
2023
pubmed:
4
9
2023
entrez:
4
9
2023
Statut:
ppublish
Résumé
Medical treatment options for bones and teeth can be significantly enhanced by taking control over the crystallization of biomaterials like hydroxyapatite in the healing process. Light-induced techniques are particularly interesting for this approach as they offer tremendous accuracy in spatial resolution. However, in the field of calcium phosphates, light-induced crystallization has not been investigated so far. Here, proof of principle is established to successfully induce carbonate-hydroxyapatite precipitation by light irradiation. Phosphoric acid is released by a photolabile molecule exclusively after irradiation, combining with calcium ions to form a calcium phosphate in the crystallization medium. 4-Nitrophenylphosphate (4NPP) is established as the photolabile molecule and the system is optimized and fully characterized. A calcium phosphate is crystallized exclusively by irradiation in aqueous solution and identified as carbonate apatite. Control over the localization and stabilization of the carbonate apatite is achieved by a pulsed laser, triggering precipitation in calcium and 4NPP-containing gel matrices. The results of this communication open up a wide range of new opportunities, both in the field of chemistry for more sophisticated reaction control in localized crystallization processes and in the field of medicine for enhanced treatment of calcium phosphate containing biomaterials.
Identifiants
pubmed: 37665635
doi: 10.1002/chem.202302327
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e202302327Subventions
Organisme : HORIZON EUROPE European Research Council
ID : 101069348
Informations de copyright
© 2023 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH.
Références
T. Omokanwaye, O. C. Wilson, A. Gugssa, W. Anderson, Mater. Sci. Eng. C 2015, 56, 84-87;
K. M. Towe, Paleobiology 1990, 16, 521-526.
S. V. Dorozhkin, Prog. Biomater. 2016, 5, 9-70;
S. V. Dorozhkin, M. Epple, Angew. Chem. Int. Ed. 2002, 41, 3130-3146;
H. El Feki, J. Michel Savariault, A. Ben Salah, M. Jemal, Solid State Sci. 2000, 2, 577-586;
J. C. Elliott, in Structure and Chemistry of the Apatites and Other Calcium Orthophosphates, Elsevier Science, 1994, p. 404.
J. J. Jacobs, A. K. Skipor, L. M. Patterson, N. J. Hallab, W. G. Paprosky, J. Black, J. O. Galante, J. Bone Jt. Surg. Am. Vol. 1998, 80, 1447-1458;
R. Strietzel, A. Hösch, H. Kalbfleisch, D. Buch, Biomaterials 1998, 19, 1495-1499;
A. Markowska-Szczupak, M. Endo-Kimura, O. Paszkiewicz, E. Kowalska, Nanomaterials (Basel) 2020, 10.
D. Almasi, N. Iqbal, M. Sadeghi, S. Izman, M. Abdul Kadir, T. Zaman, Int.J. Biomaterials 2016, 2016, 1-12;
J. Knaus, D. Schaffarczyk, H. Colfen, Macromol. Biosci. 2020, 20, e1900239.
T. Okuda, K. Ioku, I. Yonezawa, H. Minagi, Y. Gonda, G. Kawachi, M. Kamitakahara, Y. Shibata, H. Murayama, H. Kurosawa, T. Ikeda, Biomaterials 2008, 29, 2719-2728.
R. Raman, R. Bashir, in Chapter 6 - Stereolithographic 3D Bioprinting for Biomedical Applications (Eds.: A. Atala, J. J. Yoo), Academic Press, Boston, 2015, pp. 89-121.
W. C. Liu, A. A. R. Watt, Sci. Rep. 2019, 9, 10766.
A. Menichetti, A. Mavridi-Printezi, G. Falini, P. Besirske, J. M. Garcia-Ruiz, H. Colfen, M. Montalti, Chem. Eur. J. 2021, 27, 12521-12525;
T. Nishio, K. Naka, J. Cryst. Growth 2015, 416, 66-72;
Y. Zhao, Y. Xie, S. Yan, Y. Dong, Cryst. Growth Des. 2009, 9, 3072-3078;
M. H. Bistervels, M. Kamp, H. Schoenmaker, A. M. Brouwer, W. L. Noorduin, Adv. Mater. 2022, 34, e2107843.
P. Besirske, A. Menichetti, M. Montalti, J. Garcia-Ruiz, J. Boneberg, H. Cölfen, Goldschmidt 2022 (Hawaii) 2022, https://doi.org/10.46427/gold2022.9630.
A. Popov, A. Shcherbakov, N. Zholobak, A. Baranchikov, V. Ivanov, Nanosyst.: Phys. Chem. Math. 2017, 8, 760-781;
J. Zhang, X. Lu, Y. Lei, X. Hou, P. Wu, Nanoscale 2017, 9;
M. Mao, T. Tian, Y. He, Y. Ge, J. Zhou, G. Song, Microchim. Acta 2017, 185;
J. Ma, X. Cheng, F. Peng, N. Zhang, R. Li, L. Sun, Z.-L. Li, H. Jiang, J. Mater. Sci. 2019, 54, 10055-10064.
K. Holbrook, L. Ouellet, Can. J. Chem. 1958, 36, 686-690;
E. Havinga, R. Jongh, W. Dorst, Recl. Trav. Chim. Pays-Bas 2010, 75, 378-383.
http://www.molbase.com/en/hnmr_100-02-7-moldata-32821.html, (accessed: 24.11.2020);
R. W. McDowell, I. Stewart, Chem. Ecol. 2005, 21, 211-226.
A. Lotsari, A. K. Rajasekharan, M. Halvarsson, M. Andersson, Nat. Commun. 2018, 9, 4170.
F. Peters, in Biologische Kristallisation von Calciumphosphaten - Untersuchung und Simulation, Doktorwürde, Universität Hamburg, Hamburg, 2001, p 277.
G. R. Sauer, W. B. Zunic, J. R. Durig, R. E. Wuthier, Calcif. Tissue Int. 1994, 54, 414-420;
https://pocketdentistry.com/characterization-of-calcium-phosphates-using-vibrational-spectroscopies/, (accessed: 16.10.2023).
L. Moggi, A. Juris, M. Gandolfi, in Manuale del Fotochimico: Tecnique e metodologie. Bononia: Bononia, University Press, 2006, p. 208;
T. Kaia, K. Gross, L. Plūduma, M. Veiderma, J. Therm. Anal. Calorim. 2011, 110, 647-659;
M. Sneha, N. M. Sundaram, Int. J. Nanomed. 2015, 10, 99-106;
http://www.chemicalbook.com/SpectrumEN_4264-83-9_13C NMR.htm, (accessed: 16.10.2023);
L. Tortet, J. R. Gavarri, G. Nihoul, A. J. Dianoux, J. Solid State Chem. 1997, 132, 6-16;
M. Hesse, H. Meier, B. Zeeh, in Spektroskopische Methoden in der organischen Chemie, Georg Thieme Verlag, 2005, p. 468;
C. B. Baddiel, E. E. Berry, Spectrochim. Acta 1966, 22, 1407-1416;
H. El Feki, C. Rey, M. Vignoles, Calcif. Tissue Int. 1991, 49, 269-274;
M. Montalti, A. Credi, L. Prodi, M. T. Gandolfi, in Handbook of Photochemistry, CRC Press, 2006, p. 664.