[Alterations of β-γ coupling of scalp electroencephalography during epilepsy].
Epilepsy
Modulation index
Phase-amplitude coupling
Scalp electroencephalography
Journal
Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi
ISSN: 1001-5515
Titre abrégé: Sheng Wu Yi Xue Gong Cheng Xue Za Zhi
Pays: China
ID NLM: 9426398
Informations de publication
Date de publication:
25 Aug 2023
25 Aug 2023
Historique:
medline:
6
9
2023
pubmed:
5
9
2023
entrez:
4
9
2023
Statut:
ppublish
Résumé
Uncovering the alterations of neural interactions within the brain during epilepsy is important for the clinical diagnosis and treatment. Previous studies have shown that the phase-amplitude coupling (PAC) can be used as a potential biomarker for locating epileptic zones and characterizing the transition of epileptic phases. However, in contrast to the θ-γ coupling widely investigated in epilepsy, few studies have paid attention to the β-γ coupling, as well as its potential applications. In the current study, we use the modulation index (MI) to calculate the scalp electroencephalography (EEG)-based β-γ coupling and investigate the corresponding changes during different epileptic phases. The results show that the β-γ coupling of each brain region changes with the evolution of epilepsy, and in several brain regions, the β-γ coupling decreases during the ictal period but increases in the post-ictal period, where the differences are statistically significant. Moreover, the alterations of β-γ coupling between different brain regions can also be observed, and the strength of β-γ coupling increases in the post-ictal period, where the differences are also significant. Taken together, these findings not only contribute to understanding neural interactions within the brain during the evolution of epilepsy, but also provide a new insight into the clinical treatment. 揭示癫痫过程中脑内信息交互变化对临床诊疗具有重要意义。早期研究表明,相位-幅度耦合(PAC)可作为定位致痫区域和表征癫痫状态转换的潜在生物标志物。然而,目前癫痫的相位-幅度耦合研究多集中于θ-γ耦合,对β-γ耦合在癫痫过程中的变化及潜在应用知之甚少。对此,本文基于癫痫头皮脑电(EEG)数据,采用调节指数(MI)的PAC方法,探究癫痫不同状态下β-γ耦合的变化。结果发现,癫痫过程中各脑区内β-γ耦合随状态发生改变,多数脑区内的β-γ耦合在发作期减小,在发作后期增加,其差异具有统计学意义。癫痫过程中不同脑区间也存在β-γ耦合,且β-γ耦合强度在发作后期增加,其差异具有统计学意义。这些研究结果既有助于理解癫痫过程中脑内信息交互的改变,也为癫痫的临床诊疗提供了新参考。.
Autres résumés
Type: Publisher
(chi)
揭示癫痫过程中脑内信息交互变化对临床诊疗具有重要意义。早期研究表明,相位-幅度耦合(PAC)可作为定位致痫区域和表征癫痫状态转换的潜在生物标志物。然而,目前癫痫的相位-幅度耦合研究多集中于θ-γ耦合,对β-γ耦合在癫痫过程中的变化及潜在应用知之甚少。对此,本文基于癫痫头皮脑电(EEG)数据,采用调节指数(MI)的PAC方法,探究癫痫不同状态下β-γ耦合的变化。结果发现,癫痫过程中各脑区内β-γ耦合随状态发生改变,多数脑区内的β-γ耦合在发作期减小,在发作后期增加,其差异具有统计学意义。癫痫过程中不同脑区间也存在β-γ耦合,且β-γ耦合强度在发作后期增加,其差异具有统计学意义。这些研究结果既有助于理解癫痫过程中脑内信息交互的改变,也为癫痫的临床诊疗提供了新参考。.
Identifiants
pubmed: 37666760
doi: 10.7507/1001-5515.202212024
pmc: PMC10477402
doi:
Types de publication
English Abstract
Journal Article
Langues
chi
Sous-ensembles de citation
IM
Pagination
700-708Références
Neuroepidemiology. 2020;54(2):185-191
pubmed: 31852003
Sci Rep. 2016 May 05;6:25422
pubmed: 27147119
Neuroimage. 2008 Jan 15;39(2):661-8
pubmed: 17977022
J Neurosci Methods. 2015 Jul 30;250:47-63
pubmed: 25791012
J Neurosci. 2021 Jan 20;41(3):524-537
pubmed: 33234612
Neuroscience. 2021 Apr 15;460:69-87
pubmed: 33588001
Sci Rep. 2019 Jul 15;9(1):10169
pubmed: 31308412
Trends Cogn Sci. 2010 Nov;14(11):506-15
pubmed: 20932795
Cell Rep. 2018 Mar 20;22(12):3328-3338
pubmed: 29562187
IEEE Trans Biomed Eng. 2022 Jan;69(1):165-175
pubmed: 34161232
Curr Biol. 2018 Sep 24;28(18):R1083-R1088
pubmed: 30253144
Front Neurol. 2021 Sep 09;12:718683
pubmed: 34566860
Sci Rep. 2018 Dec 6;8(1):17688
pubmed: 30523336
Neuroimage. 2013 Jan 1;64:416-24
pubmed: 22986076
Trends Neurosci. 2009 Jan;32(1):9-18
pubmed: 19012975
Clin Neurophysiol. 2021 Mar;132(3):782-792
pubmed: 33571886
Brain Stimul. 2022 Jan-Feb;15(1):152-163
pubmed: 34856396
Brain Commun. 2021 Oct 06;3(4):fcab231
pubmed: 34704030
Front Neurosci. 2019 Jun 07;13:573
pubmed: 31275096
J Neurosci. 2012 Jan 4;32(1):111-23
pubmed: 22219274
IEEE Eng Med Biol Mag. 2010 May-Jun;29(3):44-56
pubmed: 20659857
J Neurophysiol. 2010 Aug;104(2):1195-210
pubmed: 20463205
Prog Neurobiol. 1997 Oct;53(2):239-58
pubmed: 9364612
Brain Sci. 2020 Nov 13;10(11):
pubmed: 33202818
J Neurosci Methods. 2004 Mar 15;134(1):9-21
pubmed: 15102499