Quantitative assessment of near-infrared fluorescent proteins.
Journal
Nature methods
ISSN: 1548-7105
Titre abrégé: Nat Methods
Pays: United States
ID NLM: 101215604
Informations de publication
Date de publication:
Oct 2023
Oct 2023
Historique:
received:
09
08
2021
accepted:
29
06
2023
pubmed:
5
9
2023
medline:
5
9
2023
entrez:
4
9
2023
Statut:
ppublish
Résumé
Recent progress in fluorescent protein development has generated a large diversity of near-infrared fluorescent proteins (NIR FPs), which are rapidly becoming popular probes for a variety of imaging applications. However, the diversity of NIR FPs poses a challenge for end-users in choosing the optimal one for a given application. Here we conducted a systematic and quantitative assessment of intracellular brightness, photostability, oligomeric state, chemical stability and cytotoxicity of 22 NIR FPs in cultured mammalian cells and primary mouse neurons and identified a set of top-performing FPs including emiRFP670, miRFP680, miRFP713 and miRFP720, which can cover a majority of imaging applications. The top-performing proteins were further validated for in vivo imaging of neurons in Caenorhabditis elegans, zebrafish, and mice as well as in mice liver. We also assessed the applicability of the selected NIR FPs for multicolor imaging of fusions, expansion microscopy and two-photon imaging.
Identifiants
pubmed: 37666982
doi: 10.1038/s41592-023-01975-z
pii: 10.1038/s41592-023-01975-z
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1605-1616Subventions
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 32050410298
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 32171093
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 32071151
Organisme : Brain and Behavior Research Foundation (Brain & Behavior Research Foundation)
ID : 28961
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : 241961032
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature America, Inc.
Références
Prasher, D. C., Eckenrode, V. K., Ward, W. W., Prendergast, F. G. & Cormier, M. J. Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111, 229–233 (1992).
pubmed: 1347277
doi: 10.1016/0378-1119(92)90691-H
Shcherbakova, D. M., Stepanenko, O. V., Turoverov, K. K. & Verkhusha, V. V. Near-infrared fluorescent proteins: multiplexing and optogenetics across scales. Trends Biotechnol. 36, 1230–1243 (2018).
pubmed: 30041828
pmcid: 6240479
doi: 10.1016/j.tibtech.2018.06.011
Filonov, G. S. et al. Bright and stable near-infrared fluorescent protein for in vivo imaging. Nat. Biotechnol. 29, 757–761 (2011).
pubmed: 21765402
pmcid: 3152693
doi: 10.1038/nbt.1918
Chu, J. et al. Non-invasive intravital imaging of cellular differentiation with a bright red-excitable fluorescent protein. Nat. Methods 11, 572–578 (2014).
pubmed: 24633408
pmcid: 4008650
doi: 10.1038/nmeth.2888
Shcherbakova, D. M. & Verkhusha, V. V. Near-infrared fluorescent proteins for multicolor in vivo imaging. Nat. Methods 10, 751–754 (2013).
pubmed: 23770755
pmcid: 3737237
doi: 10.1038/nmeth.2521
Babakhanova, S. et al. Rapid directed molecular evolution of fluorescent proteins in mammalian cells. Protein Sci. 31, 728–751 (2022).
pubmed: 34913537
doi: 10.1002/pro.4261
Qian, Y. et al. A genetically encoded near-infrared fluorescent calcium ion indicator. Nat. Methods 16, 171–174 (2019).
pubmed: 30664778
pmcid: 6393164
doi: 10.1038/s41592-018-0294-6
Qian, Y. et al. Improved genetically encoded near-infrared fluorescent calcium ion indicators for in vivo imaging. PLoS Biol. 18, e3000965 (2020).
pubmed: 33232322
pmcid: 7723245
doi: 10.1371/journal.pbio.3000965
Shcherbakova, D. M., Cox Cammer, N., Huisman, T. M., Verkhusha, V. V. & Hodgson, L. Direct multiplex imaging and optogenetics of Rho GTPases enabled by near-infrared FRET. Nat. Chem. Biol. 14, 591–600 (2018).
pubmed: 29686359
pmcid: 5964015
doi: 10.1038/s41589-018-0044-1
Shcherbakova, D. M. et al. Bright monomeric near-infrared fluorescent proteins as tags and biosensors for multiscale imaging. Nat. Commun. 7, 12405 (2016).
pubmed: 27539380
pmcid: 4992171
doi: 10.1038/ncomms12405
Kamper, M., Ta, H., Jensen, N. A., Hell, S. W. & Jakobs, S. Near-infrared STED nanoscopy with an engineered bacterial phytochrome. Nat. Commun. 9, 4762 (2018).
pubmed: 30420676
pmcid: 6232180
doi: 10.1038/s41467-018-07246-2
Wegner, W. et al. In vivo mouse and live cell STED microscopy of neuronal actin plasticity using far-red emitting fluorescent proteins. Sci. Rep. 7, 11781 (2017).
pubmed: 28924236
pmcid: 5603588
doi: 10.1038/s41598-017-11827-4
Matlashov, M. E. et al. A set of monomeric near-infrared fluorescent proteins for multicolor imaging across scales. Nat. Commun. 11, 239 (2020).
pubmed: 31932632
pmcid: 6957686
doi: 10.1038/s41467-019-13897-6
Piatkevich, K. D., Subach, F. V. & Verkhusha, V. V. Engineering of bacterial phytochromes for near-infrared imaging, sensing, and light-control in mammals. Chem. Soc. Rev. 42, 3441–3452 (2013).
pubmed: 23361376
pmcid: 3618476
doi: 10.1039/c3cs35458j
Shcherbakova, D. M., Baloban, M. & Verkhusha, V. V. Near-infrared fluorescent proteins engineered from bacterial phytochromes. Curr. Opin. Chem. Biol. 27, 52–63 (2015).
pubmed: 26115447
pmcid: 4553112
doi: 10.1016/j.cbpa.2015.06.005
Piatkevich, K. D. et al. Near-infrared fluorescent proteins engineered from bacterial phytochromes in neuroimaging. Biophys. J. 113, 2299–2309 (2017).
pubmed: 29017728
pmcid: 5700256
doi: 10.1016/j.bpj.2017.09.007
Shemetov, A. A. et al. A near-infrared genetically encoded calcium indicator for in vivo imaging. Nat. Biotechnol. 39, 368–377 (2021).
pubmed: 33106681
doi: 10.1038/s41587-020-0710-1
Yu, D. et al. A naturally monomeric infrared fluorescent protein for protein labeling in vivo. Nat. Methods 12, 763–765 (2015).
pubmed: 26098020
pmcid: 4521985
doi: 10.1038/nmeth.3447
Paez-Segala, M. G. et al. Fixation-resistant photoactivatable fluorescent proteins for CLEM. Nat. Methods 12, 215–218 (2015).
pubmed: 25581799
pmcid: 4344411
doi: 10.1038/nmeth.3225
Campbell, B. C., Paez-Segala, M. G., Looger, L. L., Petsko, G. A. & Liu, C. F. Chemically stable fluorescent proteins for advanced microscopy. Nat. Methods 19, 1612–1621 (2022).
pubmed: 36344833
pmcid: 9718679
doi: 10.1038/s41592-022-01660-7
Tillberg, P. W. et al. Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies. Nat. Biotechnol. 34, 987–992 (2016).
pubmed: 27376584
pmcid: 5068827
doi: 10.1038/nbt.3625
Cranfill, P. J. et al. Quantitative assessment of fluorescent proteins. Nat. Methods 13, 557–562 (2016).
pubmed: 27240257
pmcid: 4927352
doi: 10.1038/nmeth.3891
Costantini, L. M., Fossati, M., Francolini, M. & Snapp, E. L. Assessing the tendency of fluorescent proteins to oligomerize under physiologic conditions. Traffic 13, 643–649 (2012).
pubmed: 22289035
pmcid: 3324619
doi: 10.1111/j.1600-0854.2012.01336.x
Li, X. D. et al. Design of small monomeric and highly bright near-infrared fluorescent proteins. Biochim. Biophys. Acta Mol. Cell Res. 1866, 1608–1617 (2019).
pubmed: 31295502
doi: 10.1016/j.bbamcr.2019.06.018
Shaner, N. C. et al. A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nat. Methods 10, 407–409 (2013).
pubmed: 23524392
pmcid: 3811051
doi: 10.1038/nmeth.2413
Day, R. N. & Davidson, M. W. The fluorescent protein palette: tools for cellular imaging. Chem. Soc. Rev. 38, 2887–2921 (2009).
pubmed: 19771335
pmcid: 2910338
doi: 10.1039/b901966a
Drobizhev, M., Makarov, N. S., Tillo, S. E., Hughes, T. E. & Rebane, A. Two-photon absorption properties of fluorescent proteins. Nat. Methods 8, 393–399 (2011).
pubmed: 21527931
pmcid: 4772972
doi: 10.1038/nmeth.1596
Piatkevich, K. D. et al. A robotic multidimensional directed evolution approach applied to fluorescent voltage reporters. Nat. Chem. Biol. 14, 352–360 (2018).
pubmed: 29483642
pmcid: 5866759
doi: 10.1038/s41589-018-0004-9
Mikhaylov, A. et al. Hot-band absorption can mimic entangled two-photon absorption. J. Phys. Chem. Lett. 13, 1489–1493 (2022).
pubmed: 35129354
doi: 10.1021/acs.jpclett.1c03751
Babakhanova, S. et al. Rapid directed molecular evolution of fluorescent proteins in mammalian cells. Protein Sci. 31, 728–751 (2022).
pubmed: 34913537
doi: 10.1002/pro.4261
Holowiecki, A., O’Shields, B. & Jenny, M. J. Characterization of heme oxygenase and biliverdin reductase gene expression in zebrafish (Danio rerio): basal expression and response to pro-oxidant exposures. Toxicol. Appl. Pharmacol. 311, 74–87 (2016).
pubmed: 27671773
pmcid: 5089712
doi: 10.1016/j.taap.2016.09.022
Qian, Y. et al. Improved genetically encoded near-infrared fluorescent calcium ion indicators for in vivo imaging. PLOS Biol. 18, e3000965 (2020).
pubmed: 33232322
pmcid: 7723245
doi: 10.1371/journal.pbio.3000965
Seo, J. et al. PICASSO allows ultra-multiplexed fluorescence imaging of spatially overlapping proteins without reference spectra measurements. Nat. Commun. 13, 2475 (2022).
pubmed: 35513404
pmcid: 9072354
doi: 10.1038/s41467-022-30168-z
Chiang, H. J. et al. HyU: Hybrid Unmixing for longitudinal in vivo imaging of low signal-to-noise fluorescence. Nat. Methods 20, 248–258 (2023).
pubmed: 36658278
pmcid: 9911352
doi: 10.1038/s41592-022-01751-5
Stepanova, T. et al. Visualization of microtubule growth in cultured neurons via the use of EB3-GFP (end-binding protein 3-green fluorescent protein). J. Neurosci. 23, 2655–2664 (2003).
pubmed: 12684451
pmcid: 6742099
doi: 10.1523/JNEUROSCI.23-07-02655.2003
Riedl, J. et al. Lifeact: a versatile marker to visualize F-actin. Nat. Methods 5, 605–607 (2008).
pubmed: 18536722
pmcid: 2814344
doi: 10.1038/nmeth.1220
Kimura, S., Noda, T. & Yoshimori, T. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 3, 452–460 (2007).
pubmed: 17534139
doi: 10.4161/auto.4451
Namikawa, K. et al. Modeling neurodegenerative spinocerebellar ataxia type 13 in zebrafish using a Purkinje neuron specific tunable coexpression system. J. Neurosci. 39, 3948–3969 (2019).
pubmed: 30862666
pmcid: 6520513
doi: 10.1523/JNEUROSCI.1862-18.2019
Rodrik-Outmezguine, V. S. et al. Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor. Nature 534, 272–276 (2016).
pubmed: 27279227
pmcid: 4902179
doi: 10.1038/nature17963
Meyer, M. P. & Smith, S. J. Evidence from in vivo imaging that synaptogenesis guides the growth and branching of axonal arbors by two distinct mechanisms. J. Neurosci. 26, 3604–3614 (2006).
pubmed: 16571769
pmcid: 6673851
doi: 10.1523/JNEUROSCI.0223-06.2006
Niell, C. M., Meyer, M. P. & Smith, S. J. In vivo imaging of synapse formation on a growing dendritic arbor. Nat. Neurosci. 7, 254–260 (2004).
pubmed: 14758365
doi: 10.1038/nn1191
Li, L. et al. Overexpression of heme oxygenase 1 impairs cognitive ability and changes the plasticity of the synapse. J. Alzheimers Dis. 47, 595–608 (2015).
pubmed: 26401695
doi: 10.3233/JAD-150027
Papadaki, S. et al. Dual-expression system for blue fluorescent protein optimization. Sci. Rep. 12, 10190 (2022).
pubmed: 35715437
pmcid: 9206027
doi: 10.1038/s41598-022-13214-0
Drobizhev, M. et al. Local electric field controls fluorescence quantum yield of red and far-red fluorescent proteins. Front. Mol. Biosci. 8, 633217 (2021).
pubmed: 33763453
pmcid: 7983054
doi: 10.3389/fmolb.2021.633217
Luchowski, R. et al. Instrument response standard in time-resolved fluorescence. Rev. Sci. Instrum. 80, 033109 (2009).
pubmed: 19334909
doi: 10.1063/1.3095677
Canty, L., Hariharan, S., Liu, Q., Haney, S. A. & Andrews, D. W. Peak emission wavelength and fluorescence lifetime are coupled in far-red, GFP-like fluorescent proteins. PLoS One 13, e0208075 (2018).
pubmed: 30485364
pmcid: 6261627
doi: 10.1371/journal.pone.0208075
Drobizhev, M., Molina, R. S. & Hughes, T. E. Characterizing the two-photon absorption properties of fluorescent molecules in the 680–1300 nm spectral range. Bio Protoc. 10(2), e3498 (2020).
pubmed: 32775539
pmcid: 7409827
Kim, J.-Y., Grunke, S. D., Levites, Y., Golde, T. E. & Jankowsky, J. L. Intracerebroventricular viral injection of the neonatal mouse brain for persistent and widespread neuronal transduction. J. Vis. Exp. 15(91), 51863 (2014).
Shu, X. et al. Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome. Science 324, 804–807 (2009).
pubmed: 19423828
pmcid: 2763207
doi: 10.1126/science.1168683
Westerfield, M. The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish (Danio rerio), 5th edn (Univ. Oregon Press, 2007).
Urasaki, A., Morvan, G. & Kawakami, K. Functional dissection of the Tol2 transposable element identified the minimal cis-sequence and a highly repetitive sequence in the subterminal region essential for transposition. Genetics 174, 639–649 (2006).
pubmed: 16959904
pmcid: 1602067
doi: 10.1534/genetics.106.060244
Mishima, Y. et al. Zebrafish miR-1 and miR-133 shape muscle gene expression and regulate sarcomeric actin organization. Genes Dev. 23, 619–632 (2009).
pubmed: 19240126
pmcid: 2658521
doi: 10.1101/gad.1760209
Ishikawa, K., Sato, M., Ito, M. & Yoshida, T. Importance of histidine residue 25 of rat heme oxygenase for its catalytic activity. Biochem. Biophys. Res. Commun. 182, 981–986 (1992).
pubmed: 1540195
doi: 10.1016/0006-291X(92)91828-E
Green, R. A. et al. Expression and imaging of fluorescent proteins in the C. elegans gonad and early embryo. Methods Cell Biol. 85, 179–218 (2008).
pubmed: 18155464
doi: 10.1016/S0091-679X(08)85009-1
Baraban, M., Anselme, I., Schneider-Maunoury, S. & Giudicelli, F. Zebrafish embryonic neurons transport messenger RNA to axons and growth cones in vivo. J. Neurosci. 33, 15726–15734 (2013).
pubmed: 24089481
pmcid: 6618475
doi: 10.1523/JNEUROSCI.1510-13.2013
Strack, R. L. et al. A rapidly maturing far-red derivative of DsRed-Express2 for whole-cell labeling. Biochemistry 48, 8279–8281 (2009).
pubmed: 19658435
doi: 10.1021/bi900870u
Rodriguez, E. A. et al. A far-red fluorescent protein evolved from a cyanobacterial phycobiliprotein. Nat. Methods 13, 763–769 (2016).
pubmed: 27479328
pmcid: 5007177
doi: 10.1038/nmeth.3935
Ding, W. L. et al. Far-red acclimating cyanobacterium as versatile source for bright fluorescent biomarkers. Biochim. Biophys. Acta Mol. Cell Res. 1865, 1649–1656 (2018).
pubmed: 30327206
doi: 10.1016/j.bbamcr.2018.08.015
Yu, D. et al. An improved monomeric infrared fluorescent protein for neuronal and tumour brain imaging. Nat. Commun. 5, 3626 (2014).
pubmed: 24832154
doi: 10.1038/ncomms4626
Rogers, O. C., Johnson, D. M. & Firnberg, E. mRhubarb: engineering of monomeric, red-shifted, and brighter variants of iRFP using structure-guided multi-site mutagenesis. Sci. Rep. 9, 15653 (2019).
pubmed: 31666599
pmcid: 6821797
doi: 10.1038/s41598-019-52123-7