Quantitative assessment of near-infrared fluorescent proteins.


Journal

Nature methods
ISSN: 1548-7105
Titre abrégé: Nat Methods
Pays: United States
ID NLM: 101215604

Informations de publication

Date de publication:
Oct 2023
Historique:
received: 09 08 2021
accepted: 29 06 2023
pubmed: 5 9 2023
medline: 5 9 2023
entrez: 4 9 2023
Statut: ppublish

Résumé

Recent progress in fluorescent protein development has generated a large diversity of near-infrared fluorescent proteins (NIR FPs), which are rapidly becoming popular probes for a variety of imaging applications. However, the diversity of NIR FPs poses a challenge for end-users in choosing the optimal one for a given application. Here we conducted a systematic and quantitative assessment of intracellular brightness, photostability, oligomeric state, chemical stability and cytotoxicity of 22 NIR FPs in cultured mammalian cells and primary mouse neurons and identified a set of top-performing FPs including emiRFP670, miRFP680, miRFP713 and miRFP720, which can cover a majority of imaging applications. The top-performing proteins were further validated for in vivo imaging of neurons in Caenorhabditis elegans, zebrafish, and mice as well as in mice liver. We also assessed the applicability of the selected NIR FPs for multicolor imaging of fusions, expansion microscopy and two-photon imaging.

Identifiants

pubmed: 37666982
doi: 10.1038/s41592-023-01975-z
pii: 10.1038/s41592-023-01975-z
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1605-1616

Subventions

Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 32050410298
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 32171093
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 32071151
Organisme : Brain and Behavior Research Foundation (Brain & Behavior Research Foundation)
ID : 28961
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : 241961032

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature America, Inc.

Références

Prasher, D. C., Eckenrode, V. K., Ward, W. W., Prendergast, F. G. & Cormier, M. J. Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111, 229–233 (1992).
pubmed: 1347277 doi: 10.1016/0378-1119(92)90691-H
Shcherbakova, D. M., Stepanenko, O. V., Turoverov, K. K. & Verkhusha, V. V. Near-infrared fluorescent proteins: multiplexing and optogenetics across scales. Trends Biotechnol. 36, 1230–1243 (2018).
pubmed: 30041828 pmcid: 6240479 doi: 10.1016/j.tibtech.2018.06.011
Filonov, G. S. et al. Bright and stable near-infrared fluorescent protein for in vivo imaging. Nat. Biotechnol. 29, 757–761 (2011).
pubmed: 21765402 pmcid: 3152693 doi: 10.1038/nbt.1918
Chu, J. et al. Non-invasive intravital imaging of cellular differentiation with a bright red-excitable fluorescent protein. Nat. Methods 11, 572–578 (2014).
pubmed: 24633408 pmcid: 4008650 doi: 10.1038/nmeth.2888
Shcherbakova, D. M. & Verkhusha, V. V. Near-infrared fluorescent proteins for multicolor in vivo imaging. Nat. Methods 10, 751–754 (2013).
pubmed: 23770755 pmcid: 3737237 doi: 10.1038/nmeth.2521
Babakhanova, S. et al. Rapid directed molecular evolution of fluorescent proteins in mammalian cells. Protein Sci. 31, 728–751 (2022).
pubmed: 34913537 doi: 10.1002/pro.4261
Qian, Y. et al. A genetically encoded near-infrared fluorescent calcium ion indicator. Nat. Methods 16, 171–174 (2019).
pubmed: 30664778 pmcid: 6393164 doi: 10.1038/s41592-018-0294-6
Qian, Y. et al. Improved genetically encoded near-infrared fluorescent calcium ion indicators for in vivo imaging. PLoS Biol. 18, e3000965 (2020).
pubmed: 33232322 pmcid: 7723245 doi: 10.1371/journal.pbio.3000965
Shcherbakova, D. M., Cox Cammer, N., Huisman, T. M., Verkhusha, V. V. & Hodgson, L. Direct multiplex imaging and optogenetics of Rho GTPases enabled by near-infrared FRET. Nat. Chem. Biol. 14, 591–600 (2018).
pubmed: 29686359 pmcid: 5964015 doi: 10.1038/s41589-018-0044-1
Shcherbakova, D. M. et al. Bright monomeric near-infrared fluorescent proteins as tags and biosensors for multiscale imaging. Nat. Commun. 7, 12405 (2016).
pubmed: 27539380 pmcid: 4992171 doi: 10.1038/ncomms12405
Kamper, M., Ta, H., Jensen, N. A., Hell, S. W. & Jakobs, S. Near-infrared STED nanoscopy with an engineered bacterial phytochrome. Nat. Commun. 9, 4762 (2018).
pubmed: 30420676 pmcid: 6232180 doi: 10.1038/s41467-018-07246-2
Wegner, W. et al. In vivo mouse and live cell STED microscopy of neuronal actin plasticity using far-red emitting fluorescent proteins. Sci. Rep. 7, 11781 (2017).
pubmed: 28924236 pmcid: 5603588 doi: 10.1038/s41598-017-11827-4
Matlashov, M. E. et al. A set of monomeric near-infrared fluorescent proteins for multicolor imaging across scales. Nat. Commun. 11, 239 (2020).
pubmed: 31932632 pmcid: 6957686 doi: 10.1038/s41467-019-13897-6
Piatkevich, K. D., Subach, F. V. & Verkhusha, V. V. Engineering of bacterial phytochromes for near-infrared imaging, sensing, and light-control in mammals. Chem. Soc. Rev. 42, 3441–3452 (2013).
pubmed: 23361376 pmcid: 3618476 doi: 10.1039/c3cs35458j
Shcherbakova, D. M., Baloban, M. & Verkhusha, V. V. Near-infrared fluorescent proteins engineered from bacterial phytochromes. Curr. Opin. Chem. Biol. 27, 52–63 (2015).
pubmed: 26115447 pmcid: 4553112 doi: 10.1016/j.cbpa.2015.06.005
Piatkevich, K. D. et al. Near-infrared fluorescent proteins engineered from bacterial phytochromes in neuroimaging. Biophys. J. 113, 2299–2309 (2017).
pubmed: 29017728 pmcid: 5700256 doi: 10.1016/j.bpj.2017.09.007
Shemetov, A. A. et al. A near-infrared genetically encoded calcium indicator for in vivo imaging. Nat. Biotechnol. 39, 368–377 (2021).
pubmed: 33106681 doi: 10.1038/s41587-020-0710-1
Yu, D. et al. A naturally monomeric infrared fluorescent protein for protein labeling in vivo. Nat. Methods 12, 763–765 (2015).
pubmed: 26098020 pmcid: 4521985 doi: 10.1038/nmeth.3447
Paez-Segala, M. G. et al. Fixation-resistant photoactivatable fluorescent proteins for CLEM. Nat. Methods 12, 215–218 (2015).
pubmed: 25581799 pmcid: 4344411 doi: 10.1038/nmeth.3225
Campbell, B. C., Paez-Segala, M. G., Looger, L. L., Petsko, G. A. & Liu, C. F. Chemically stable fluorescent proteins for advanced microscopy. Nat. Methods 19, 1612–1621 (2022).
pubmed: 36344833 pmcid: 9718679 doi: 10.1038/s41592-022-01660-7
Tillberg, P. W. et al. Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies. Nat. Biotechnol. 34, 987–992 (2016).
pubmed: 27376584 pmcid: 5068827 doi: 10.1038/nbt.3625
Cranfill, P. J. et al. Quantitative assessment of fluorescent proteins. Nat. Methods 13, 557–562 (2016).
pubmed: 27240257 pmcid: 4927352 doi: 10.1038/nmeth.3891
Costantini, L. M., Fossati, M., Francolini, M. & Snapp, E. L. Assessing the tendency of fluorescent proteins to oligomerize under physiologic conditions. Traffic 13, 643–649 (2012).
pubmed: 22289035 pmcid: 3324619 doi: 10.1111/j.1600-0854.2012.01336.x
Li, X. D. et al. Design of small monomeric and highly bright near-infrared fluorescent proteins. Biochim. Biophys. Acta Mol. Cell Res. 1866, 1608–1617 (2019).
pubmed: 31295502 doi: 10.1016/j.bbamcr.2019.06.018
Shaner, N. C. et al. A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nat. Methods 10, 407–409 (2013).
pubmed: 23524392 pmcid: 3811051 doi: 10.1038/nmeth.2413
Day, R. N. & Davidson, M. W. The fluorescent protein palette: tools for cellular imaging. Chem. Soc. Rev. 38, 2887–2921 (2009).
pubmed: 19771335 pmcid: 2910338 doi: 10.1039/b901966a
Drobizhev, M., Makarov, N. S., Tillo, S. E., Hughes, T. E. & Rebane, A. Two-photon absorption properties of fluorescent proteins. Nat. Methods 8, 393–399 (2011).
pubmed: 21527931 pmcid: 4772972 doi: 10.1038/nmeth.1596
Piatkevich, K. D. et al. A robotic multidimensional directed evolution approach applied to fluorescent voltage reporters. Nat. Chem. Biol. 14, 352–360 (2018).
pubmed: 29483642 pmcid: 5866759 doi: 10.1038/s41589-018-0004-9
Mikhaylov, A. et al. Hot-band absorption can mimic entangled two-photon absorption. J. Phys. Chem. Lett. 13, 1489–1493 (2022).
pubmed: 35129354 doi: 10.1021/acs.jpclett.1c03751
Babakhanova, S. et al. Rapid directed molecular evolution of fluorescent proteins in mammalian cells. Protein Sci. 31, 728–751 (2022).
pubmed: 34913537 doi: 10.1002/pro.4261
Holowiecki, A., O’Shields, B. & Jenny, M. J. Characterization of heme oxygenase and biliverdin reductase gene expression in zebrafish (Danio rerio): basal expression and response to pro-oxidant exposures. Toxicol. Appl. Pharmacol. 311, 74–87 (2016).
pubmed: 27671773 pmcid: 5089712 doi: 10.1016/j.taap.2016.09.022
Qian, Y. et al. Improved genetically encoded near-infrared fluorescent calcium ion indicators for in vivo imaging. PLOS Biol. 18, e3000965 (2020).
pubmed: 33232322 pmcid: 7723245 doi: 10.1371/journal.pbio.3000965
Seo, J. et al. PICASSO allows ultra-multiplexed fluorescence imaging of spatially overlapping proteins without reference spectra measurements. Nat. Commun. 13, 2475 (2022).
pubmed: 35513404 pmcid: 9072354 doi: 10.1038/s41467-022-30168-z
Chiang, H. J. et al. HyU: Hybrid Unmixing for longitudinal in vivo imaging of low signal-to-noise fluorescence. Nat. Methods 20, 248–258 (2023).
pubmed: 36658278 pmcid: 9911352 doi: 10.1038/s41592-022-01751-5
Stepanova, T. et al. Visualization of microtubule growth in cultured neurons via the use of EB3-GFP (end-binding protein 3-green fluorescent protein). J. Neurosci. 23, 2655–2664 (2003).
pubmed: 12684451 pmcid: 6742099 doi: 10.1523/JNEUROSCI.23-07-02655.2003
Riedl, J. et al. Lifeact: a versatile marker to visualize F-actin. Nat. Methods 5, 605–607 (2008).
pubmed: 18536722 pmcid: 2814344 doi: 10.1038/nmeth.1220
Kimura, S., Noda, T. & Yoshimori, T. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 3, 452–460 (2007).
pubmed: 17534139 doi: 10.4161/auto.4451
Namikawa, K. et al. Modeling neurodegenerative spinocerebellar ataxia type 13 in zebrafish using a Purkinje neuron specific tunable coexpression system. J. Neurosci. 39, 3948–3969 (2019).
pubmed: 30862666 pmcid: 6520513 doi: 10.1523/JNEUROSCI.1862-18.2019
Rodrik-Outmezguine, V. S. et al. Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor. Nature 534, 272–276 (2016).
pubmed: 27279227 pmcid: 4902179 doi: 10.1038/nature17963
Meyer, M. P. & Smith, S. J. Evidence from in vivo imaging that synaptogenesis guides the growth and branching of axonal arbors by two distinct mechanisms. J. Neurosci. 26, 3604–3614 (2006).
pubmed: 16571769 pmcid: 6673851 doi: 10.1523/JNEUROSCI.0223-06.2006
Niell, C. M., Meyer, M. P. & Smith, S. J. In vivo imaging of synapse formation on a growing dendritic arbor. Nat. Neurosci. 7, 254–260 (2004).
pubmed: 14758365 doi: 10.1038/nn1191
Li, L. et al. Overexpression of heme oxygenase 1 impairs cognitive ability and changes the plasticity of the synapse. J. Alzheimers Dis. 47, 595–608 (2015).
pubmed: 26401695 doi: 10.3233/JAD-150027
Papadaki, S. et al. Dual-expression system for blue fluorescent protein optimization. Sci. Rep. 12, 10190 (2022).
pubmed: 35715437 pmcid: 9206027 doi: 10.1038/s41598-022-13214-0
Drobizhev, M. et al. Local electric field controls fluorescence quantum yield of red and far-red fluorescent proteins. Front. Mol. Biosci. 8, 633217 (2021).
pubmed: 33763453 pmcid: 7983054 doi: 10.3389/fmolb.2021.633217
Luchowski, R. et al. Instrument response standard in time-resolved fluorescence. Rev. Sci. Instrum. 80, 033109 (2009).
pubmed: 19334909 doi: 10.1063/1.3095677
Canty, L., Hariharan, S., Liu, Q., Haney, S. A. & Andrews, D. W. Peak emission wavelength and fluorescence lifetime are coupled in far-red, GFP-like fluorescent proteins. PLoS One 13, e0208075 (2018).
pubmed: 30485364 pmcid: 6261627 doi: 10.1371/journal.pone.0208075
Drobizhev, M., Molina, R. S. & Hughes, T. E. Characterizing the two-photon absorption properties of fluorescent molecules in the 680–1300 nm spectral range. Bio Protoc. 10(2), e3498 (2020).
pubmed: 32775539 pmcid: 7409827
Kim, J.-Y., Grunke, S. D., Levites, Y., Golde, T. E. & Jankowsky, J. L. Intracerebroventricular viral injection of the neonatal mouse brain for persistent and widespread neuronal transduction. J. Vis. Exp. 15(91), 51863 (2014).
Shu, X. et al. Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome. Science 324, 804–807 (2009).
pubmed: 19423828 pmcid: 2763207 doi: 10.1126/science.1168683
Westerfield, M. The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish (Danio rerio), 5th edn (Univ. Oregon Press, 2007).
Urasaki, A., Morvan, G. & Kawakami, K. Functional dissection of the Tol2 transposable element identified the minimal cis-sequence and a highly repetitive sequence in the subterminal region essential for transposition. Genetics 174, 639–649 (2006).
pubmed: 16959904 pmcid: 1602067 doi: 10.1534/genetics.106.060244
Mishima, Y. et al. Zebrafish miR-1 and miR-133 shape muscle gene expression and regulate sarcomeric actin organization. Genes Dev. 23, 619–632 (2009).
pubmed: 19240126 pmcid: 2658521 doi: 10.1101/gad.1760209
Ishikawa, K., Sato, M., Ito, M. & Yoshida, T. Importance of histidine residue 25 of rat heme oxygenase for its catalytic activity. Biochem. Biophys. Res. Commun. 182, 981–986 (1992).
pubmed: 1540195 doi: 10.1016/0006-291X(92)91828-E
Green, R. A. et al. Expression and imaging of fluorescent proteins in the C. elegans gonad and early embryo. Methods Cell Biol. 85, 179–218 (2008).
pubmed: 18155464 doi: 10.1016/S0091-679X(08)85009-1
Baraban, M., Anselme, I., Schneider-Maunoury, S. & Giudicelli, F. Zebrafish embryonic neurons transport messenger RNA to axons and growth cones in vivo. J. Neurosci. 33, 15726–15734 (2013).
pubmed: 24089481 pmcid: 6618475 doi: 10.1523/JNEUROSCI.1510-13.2013
Strack, R. L. et al. A rapidly maturing far-red derivative of DsRed-Express2 for whole-cell labeling. Biochemistry 48, 8279–8281 (2009).
pubmed: 19658435 doi: 10.1021/bi900870u
Rodriguez, E. A. et al. A far-red fluorescent protein evolved from a cyanobacterial phycobiliprotein. Nat. Methods 13, 763–769 (2016).
pubmed: 27479328 pmcid: 5007177 doi: 10.1038/nmeth.3935
Ding, W. L. et al. Far-red acclimating cyanobacterium as versatile source for bright fluorescent biomarkers. Biochim. Biophys. Acta Mol. Cell Res. 1865, 1649–1656 (2018).
pubmed: 30327206 doi: 10.1016/j.bbamcr.2018.08.015
Yu, D. et al. An improved monomeric infrared fluorescent protein for neuronal and tumour brain imaging. Nat. Commun. 5, 3626 (2014).
pubmed: 24832154 doi: 10.1038/ncomms4626
Rogers, O. C., Johnson, D. M. & Firnberg, E. mRhubarb: engineering of monomeric, red-shifted, and brighter variants of iRFP using structure-guided multi-site mutagenesis. Sci. Rep. 9, 15653 (2019).
pubmed: 31666599 pmcid: 6821797 doi: 10.1038/s41598-019-52123-7

Auteurs

Hanbin Zhang (H)

School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.

Stavrini Papadaki (S)

School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.

Xiaoting Sun (X)

School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.

Xinyue Wang (X)

Division of Cellular and Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany.

Mikhail Drobizhev (M)

Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA.

Luxia Yao (L)

School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.

Michel Rehbock (M)

Division of Cellular and Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany.

Reinhard W Köster (RW)

Division of Cellular and Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany.

Lianfeng Wu (L)

School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.

Kazuhiko Namikawa (K)

Division of Cellular and Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany.

Kiryl D Piatkevich (KD)

School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China. kiryl.piatkevich@westlake.edu.cn.
Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China. kiryl.piatkevich@westlake.edu.cn.
Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China. kiryl.piatkevich@westlake.edu.cn.

Classifications MeSH