The mesencephalic locomotor region recruits V2a reticulospinal neurons to drive forward locomotion in larval zebrafish.
Journal
Nature neuroscience
ISSN: 1546-1726
Titre abrégé: Nat Neurosci
Pays: United States
ID NLM: 9809671
Informations de publication
Date de publication:
10 2023
10 2023
Historique:
received:
02
03
2022
accepted:
24
07
2023
medline:
4
10
2023
pubmed:
5
9
2023
entrez:
4
9
2023
Statut:
ppublish
Résumé
The mesencephalic locomotor region (MLR) is a brain stem area whose stimulation triggers graded forward locomotion. How MLR neurons recruit downstream vsx2
Identifiants
pubmed: 37667039
doi: 10.1038/s41593-023-01418-0
pii: 10.1038/s41593-023-01418-0
pmc: PMC10545542
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1775-1790Subventions
Organisme : NINDS NIH HHS
ID : U01 NS094296
Pays : United States
Organisme : NINDS NIH HHS
ID : U19 NS104653
Pays : United States
Organisme : NINDS NIH HHS
ID : UF1 NS108213
Pays : United States
Informations de copyright
© 2023. The Author(s).
Références
Kiehn, O. Decoding the organization of spinal circuits that control locomotion. Nat. Rev. Neurosci. 17, 224–238 (2016).
pubmed: 26935168
pmcid: 4844028
doi: 10.1038/nrn.2016.9
Grillner, S., Wallén, P., Saitoh, K., Kozlov, A. & Robertson, B. Neural bases of goal-directed locomotion in vertebrates—an overview. Brain Res. Rev. 57, 2–12 (2008).
pubmed: 17916382
doi: 10.1016/j.brainresrev.2007.06.027
Ruder, L. & Arber, S. Brainstem circuits controlling action diversification. Annu. Rev. Neurosci. 42, 485–504 (2019).
pubmed: 31283898
doi: 10.1146/annurev-neuro-070918-050201
Deliagina, T. G., Zelenin, P. V., Fagerstedt, P., Grillner, S. & Orlovsky, G. N. Activity of reticulospinal neurons during locomotion in the freely behaving lamprey. J. Neurophysiol. 83, 853–863 (2000).
pubmed: 10669499
doi: 10.1152/jn.2000.83.2.853
Zelenin, P. V. Reticulospinal neurons controlling forward and backward swimming in the lamprey. J. Neurophysiol. 105, 1361–1371 (2011).
pubmed: 21248057
doi: 10.1152/jn.00887.2010
Juvin, L. et al. A specific population of reticulospinal neurons controls the termination of locomotion. Cell Rep. 15, 2377–2386 (2016).
pubmed: 27264174
doi: 10.1016/j.celrep.2016.05.029
Orlovsky, G. N., Deliagina, T. G. & Wallén, P. Vestibular control of swimming in lamprey. I. Responses of reticulospinal neurons to roll and pitch. Exp. Brain Res. 90, 479–488 (1992).
pubmed: 1426108
doi: 10.1007/BF00230930
Shik, M. L., Severin, F. V. & Orlovsky, G. N. Control of walking and running by means of electrical stimulation of the mesencephalon. Electroencephalogr. Clin. Neurophysiol. 26, 549 (1969).
pubmed: 4181500
Ryczko, D. The mesencephalic locomotor region: multiple cell types, multiple behavioral roles, and multiple implications for disease. Neuroscientist https://doi.org/10.1177/10738584221139136 (2022).
doi: 10.1177/10738584221139136
pubmed: 36575956
Ryczko, D. & Dubuc, R. The multifunctional mesencephalic locomotor region. Curr. Pharm. Des. 19, 4448–4470 (2013).
pubmed: 23360276
doi: 10.2174/1381612811319240011
Garcia-Rill, E., Skinner, R. D. & Fitzgerald, J. A. Chemical activation of the mesencephalic locomotor region. Brain Res. 330, 43–54 (1985).
pubmed: 3986540
doi: 10.1016/0006-8993(85)90006-X
Capelli, P., Pivetta, C., Soledad Esposito, M. & Arber, S. Locomotor speed control circuits in the caudal brainstem. Nature 551, 373–377 (2017).
pubmed: 29059682
doi: 10.1038/nature24064
Ryczko, D., Auclair, F., Cabelguen, J.-M. & Dubuc, R. The mesencephalic locomotor region sends a bilateral glutamatergic drive to hindbrain reticulospinal neurons in a tetrapod. J. Comp. Neurol. 524, 1361–1383 (2016).
pubmed: 26470600
doi: 10.1002/cne.23911
Steeves, J. D. & Jordan, L. M. Autoradiographic demonstration of the projections from the mesencephalic locomotor region. Brain Res. 307, 263–276 (1984).
pubmed: 6466996
doi: 10.1016/0006-8993(84)90480-3
Garcia-Rill, E., Skinner, R. D., Gilmore, S. A. & Owings, R. Connections of the mesencephalic locomotor region (MLR) II. Afferents and efferents. Brain Res. Bull. 10, 63–71 (1983).
pubmed: 6186345
doi: 10.1016/0361-9230(83)90076-X
Cepeda-Nieto, A. C., Pfaff, S. L. & Varela-Echavarría, A. Homeodomain transcription factors in the development of subsets of hindbrain reticulospinal neurons. Mol. Cell. Neurosci. 28, 30–41 (2005).
pubmed: 15607939
doi: 10.1016/j.mcn.2004.06.016
Bretzner, F. & Brownstone, R. M. Lhx3-Chx10 reticulospinal neurons in locomotor circuits. J. Neurosci. 33, 14681–14692 (2013).
pubmed: 24027269
pmcid: 6705172
doi: 10.1523/JNEUROSCI.5231-12.2013
Kimura, Y. et al. Hindbrain V2a neurons in the excitation of spinal locomotor circuits during zebrafish swimming. Curr. Biol. 23, 843–849 (2013).
pubmed: 23623549
doi: 10.1016/j.cub.2013.03.066
Cregg, J. M. et al. Brainstem neurons that command mammalian locomotor asymmetries. Nat. Neurosci. 23, 730–740 (2020).
pubmed: 32393896
pmcid: 7610510
doi: 10.1038/s41593-020-0633-7
Usseglio, G., Gatier, E., Heuzé, A., Hérent, C. & Bouvier, J. Control of orienting movements and locomotion by projection-defined subsets of brainstem V2a neurons. Curr. Biol. 30, 4665–4681 (2020).
pubmed: 33007251
doi: 10.1016/j.cub.2020.09.014
Huang, K.-H., Ahrens, M. B., Dunn, T. W. & Engert, F. Spinal projection neurons control turning behaviors in zebrafish. Curr. Biol. 23, 1566–1573 (2013).
pubmed: 23910662
pmcid: 3752323
doi: 10.1016/j.cub.2013.06.044
Bouvier, J. et al. Descending command neurons in the brainstem that halt locomotion. Cell 163, 1191–1203 (2015).
pubmed: 26590422
pmcid: 4899047
doi: 10.1016/j.cell.2015.10.074
Watson, C., Bartholomaeus, C. & Puelles, L. Time for radical changes in brain stem nomenclature—applying the lessons from developmental gene patterns. Front. Neuroanat. 13, 10 (2019).
pubmed: 30809133
pmcid: 6380082
doi: 10.3389/fnana.2019.00010
Kashin, S. M., Feldman, A. G. & Orlovsky, G. N. Locomotion of fish evoked by electrical stimulation of the brain. Brain Res. 82, 41–47 (1974).
pubmed: 4611595
doi: 10.1016/0006-8993(74)90891-9
Severi, K. E. et al. Neural control and modulation of swimming speed in the larval zebrafish. Neuron 83, 692–707 (2014).
pubmed: 25066084
pmcid: 4126853
doi: 10.1016/j.neuron.2014.06.032
Berg, E. M. et al. Brainstem circuits encoding start, speed, and duration of swimming in adult zebrafish. Neuron 111, 372–386 (2023).
pubmed: 36413988
doi: 10.1016/j.neuron.2022.10.034
Green, M. H. & Hale, M. E. Activity of pectoral fin motoneurons during two swimming gaits in the larval zebrafish (Danio rerio) and localization of upstream circuit elements. J. Neurophysiol. 108, 3393–3402 (2012).
pubmed: 23034362
doi: 10.1152/jn.00623.2012
Dunn, T. W. et al. Brain-wide mapping of neural activity controlling zebrafish exploratory locomotion. eLife 5, e12741 (2016).
pubmed: 27003593
pmcid: 4841782
doi: 10.7554/eLife.12741
Kimmel, C. B., Powell, S. L. & Metcalfe, W. K. Brain neurons which project to the spinal cord in young larvae of the zebrafish. J. Comp. Neurol. 205, 112–127 (1982).
pubmed: 7076887
doi: 10.1002/cne.902050203
Freeman, J. et al. Mapping brain activity at scale with cluster computing. Nat. Methods 11, 941–950 (2014).
pubmed: 25068736
doi: 10.1038/nmeth.3041
Kunst, M. et al. A cellular-resolution atlas of the larval zebrafish brain. Neuron 103, 21–38 (2019).
pubmed: 31147152
doi: 10.1016/j.neuron.2019.04.034
Le Ray, D. et al. Nicotinic activation of reticulospinal cells involved in the control of swimming in lampreys. Eur. J. Neurosci. 17, 137–148 (2003).
pubmed: 12534977
doi: 10.1046/j.1460-9568.2003.02417.x
Fougère, M., Flaive, A., Frigon, A. & Ryczko, D. Descending dopaminergic control of brainstem locomotor circuits. Curr. Opin. Physiol. 8, 30–35 (2019).
doi: 10.1016/j.cophys.2018.12.004
Kimura, Y., Hisano, Y., Kawahara, A. & Higashijima, S. Efficient generation of knock-in transgenic zebrafish carrying reporter/driver genes by CRISPR/Cas9-mediated genome engineering. Sci. Rep. 4, 6545 (2014).
pubmed: 25293390
pmcid: 4189020
doi: 10.1038/srep06545
Markov, D. A., Petrucco, L., Kist, A. M. & Portugues, R. A cerebellar internal model calibrates a feedback controller involved in sensorimotor control. Nat. Commun. 12, 6694 (2021).
pubmed: 34795244
pmcid: 8602262
doi: 10.1038/s41467-021-26988-0
Sirota, M. G., Di Prisco, G. V. & Dubuc, R. Stimulation of the mesencephalic locomotor region elicits controlled swimming in semi-intact lampreys. Eur. J. Neurosci. 12, 4081–4092 (2000).
pubmed: 11069605
doi: 10.1046/j.1460-9568.2000.00301.x
Cabelguen, J.-M., Bourcier-Lucas, C. & Dubuc, R. Bimodal locomotion elicited by electrical stimulation of the midbrain in the salamander Notophthalmus viridescens. J. Neurosci. 23, 2434–2439 (2003).
pubmed: 12657703
pmcid: 6741995
doi: 10.1523/JNEUROSCI.23-06-02434.2003
Brocard, F. & Dubuc, R. Differential contribution of reticulospinal cells to the control of locomotion induced by the mesencephalic locomotor region. J. Neurophysiol. 90, 1714–1727 (2003).
pubmed: 12736238
doi: 10.1152/jn.00202.2003
Brocard, F. et al. The transformation of a unilateral locomotor command into a symmetrical bilateral activation in the brainstem. J. Neurosci. 30, 523–533 (2010).
pubmed: 20071515
pmcid: 6632989
doi: 10.1523/JNEUROSCI.3433-09.2010
Antinucci, P., Folgueira, M. & Bianco, I. H. Pretectal neurons control hunting behaviour. eLife 8, e48114 (2019).
pubmed: 31591961
pmcid: 6783268
doi: 10.7554/eLife.48114
Pujala, A. & Koyama, M. Chronology-based architecture of descending circuits that underlie the development of locomotor repertoire after birth. eLife 8, e42135 (2019).
pubmed: 30801247
pmcid: 6449084
doi: 10.7554/eLife.42135
Chopek, J. W., Zhang, Y. & Brownstone, R. M. Intrinsic brainstem circuits comprised of Chx10-expressing neurons contribute to reticulospinal output in mice. J. Neurophysiol. 126, 1978–1990 (2021).
pubmed: 34669520
pmcid: 8715053
doi: 10.1152/jn.00322.2021
Kimura, Y., Okamura, Y. & Higashijima, S. alx, a zebrafish homolog of Chx10, marks ipsilateral descending excitatory interneurons that participate in the regulation of spinal locomotor circuits. J. Neurosci. 26, 5684–5697 (2006).
pubmed: 16723525
pmcid: 6675258
doi: 10.1523/JNEUROSCI.4993-05.2006
Zou, M., Friedrich, R. W. & Bianco, I. H. in Zebrafish: Methods and Protocols (eds Kawakami, K. et al.) 259–269 (Springer, 2016).
Bouchard, M. B. et al. Swept confocally-aligned planar excitation (SCAPE) microscopy for high speed volumetric imaging of behaving organisms. Nat. Photonics 9, 113–119 (2015).
pubmed: 25663846
pmcid: 4317333
doi: 10.1038/nphoton.2014.323
Voleti, V. et al. Real-time volumetric microscopy of in vivo dynamics and large-scale samples with SCAPE 2.0. Nat. Methods 16, 1054–1062 (2019).
pubmed: 31562489
pmcid: 6885017
doi: 10.1038/s41592-019-0579-4
Friedrich, J., Zhou, P. & Paninski, L. Fast online deconvolution of calcium imaging data. PLoS Comput. Biol. 13, e1005423 (2017).
pubmed: 28291787
pmcid: 5370160
doi: 10.1371/journal.pcbi.1005423
Caggiano, V. et al. Midbrain circuits that set locomotor speed and gait selection. Nature 553, 455–460 (2018).
pubmed: 29342142
pmcid: 5937258
doi: 10.1038/nature25448
Carvalho, M. M. et al. A brainstem locomotor circuit drives the activity of speed cells in the medial entorhinal cortex. Cell Rep. 32, 108123 (2020).
pubmed: 32905779
pmcid: 7487772
doi: 10.1016/j.celrep.2020.108123
Chen, X. et al. Granger causality analysis for calcium transients in neuronal networks, challenges and improvements. eLife 12, e81279 (2023).
pubmed: 36749019
pmcid: 10017105
doi: 10.7554/eLife.81279
Kobayashi, N., Yoshida, M., Matsumoto, N. & Uematsu, K. Artificial control of swimming in goldfish by brain stimulation: confirmation of the midbrain nuclei as the swimming center. Neurosci. Lett. 452, 42–46 (2009).
pubmed: 19428999
doi: 10.1016/j.neulet.2009.01.035
Thiele, T. R., Donovan, J. C. & Baier, H. Descending control of swim posture by a midbrain nucleus in zebrafish. Neuron 83, 679–691 (2014).
pubmed: 25066082
pmcid: 4157661
doi: 10.1016/j.neuron.2014.04.018
Rajan, G. et al. Evolutionary divergence of locomotion in two related vertebrate species. Cell Rep. 38, 110585 (2022).
pubmed: 35354040
doi: 10.1016/j.celrep.2022.110585
Gahtan, E., Tanger, P. & Baier, H. Visual prey capture in larval zebrafish is controlled by identified reticulospinal neurons downstream of the tectum. J. Neurosci. 25, 9294–9303 (2005).
pubmed: 16207889
pmcid: 6725764
doi: 10.1523/JNEUROSCI.2678-05.2005
Sugioka, T., Tanimoto, M. & Higashijima, S. Biomechanics and neural circuits for vestibular-induced fine postural control in larval zebrafish. Nat. Commun. 14, 1217 (2023).
pubmed: 36898983
pmcid: 10006170
doi: 10.1038/s41467-023-36682-y
Wang, W.-C. & McLean, D. L. Selective responses to tonic descending commands by temporal summation in a spinal motor pool. Neuron 83, 708–721 (2014).
pubmed: 25066087
pmcid: 4126198
doi: 10.1016/j.neuron.2014.06.021
Orger, M. B., Kampff, A. R., Severi, K. E., Bollmann, J. H. & Engert, F. Control of visually guided behavior by distinct populations of spinal projection neurons. Nat. Neurosci. 11, 327–333 (2008).
pubmed: 18264094
pmcid: 2894808
doi: 10.1038/nn2048
Fukushima, K. The interstitial nucleus of Cajal and its role in the control of movements of head and eyes. Prog. Neurobiol. 29, 107–192 (1987).
pubmed: 3108957
doi: 10.1016/0301-0082(87)90016-5
Wang, Z., Maunze, B., Wang, Y., Tsoulfas, P. & Blackmore, M. G. Global connectivity and function of descending spinal input revealed by 3D microscopy and retrograde transduction. J. Neurosci. 38, 10566–10581 (2018).
pubmed: 30341180
pmcid: 6284107
doi: 10.1523/JNEUROSCI.1196-18.2018
Klier, E. M., Wang, H., Constantin, A. G. & Crawford, J. D. Midbrain control of three-dimensional head orientation. Science 295, 1314–1316 (2002).
pubmed: 11847347
doi: 10.1126/science.1067300
Farshadmanesh, F. et al. Neck muscle synergies during stimulation and inactivation of the interstitial nucleus of Cajal (INC). J. Neurophysiol. 100, 1677–1685 (2008).
pubmed: 18579660
doi: 10.1152/jn.90363.2008
Berezovskiĭ, V. K. [The participation of the interstitial nucleus of Cajal in initiating locomotion in cats and rats]. Neirofiziologiia 23, 368–371 (1991).
pubmed: 1881493
Mirat, O., Sternberg, J., Severi, K. & Wyart, C. ZebraZoom: an automated program for high-throughput behavioral analysis and categorization. Front. Neural Circuits 7, 107 (2013).
pubmed: 23781175
pmcid: 3679480
doi: 10.3389/fncir.2013.00107
Gariépy, J.-F. et al. Specific neural substrate linking respiration to locomotion. Proc. Natl Acad. Sci. USA 109, E84–E92 (2012).
pubmed: 22160700
doi: 10.1073/pnas.1113002109
Opris, I. et al. Activation of brainstem neurons during mesencephalic locomotor region-evoked locomotion in the cat. Front. Syst. Neurosci. 13, 69 (2019).
pubmed: 31798423
pmcid: 6868058
doi: 10.3389/fnsys.2019.00069
Ryczko, D., Simon, A. & Ijspeert, A. J. Walking with salamanders: from molecules to biorobotics. Trends Neurosci. 43, 916–930 (2020).
pubmed: 33010947
doi: 10.1016/j.tins.2020.08.006
Oueghlani, Z. et al. Brainstem steering of locomotor activity in the newborn rat. J. Neurosci. 38, 7725–7740 (2018).
pubmed: 30037828
pmcid: 6705974
doi: 10.1523/JNEUROSCI.1074-18.2018
Schwenkgrub, J., Harrell, E. R., Bathellier, B. & Bouvier, J. Deep imaging in the brainstem reveals functional heterogeneity in V2a neurons controlling locomotion. Sci. Adv. 6, eabc6309 (2020).
pubmed: 33277252
pmcid: 7821901
doi: 10.1126/sciadv.abc6309
Kinkhabwala, A. et al. A structural and functional ground plan for neurons in the hindbrain of zebrafish. Proc. Natl Acad. Sci. USA 108, 1164–1169 (2011).
pubmed: 21199947
pmcid: 3024665
doi: 10.1073/pnas.1012185108
Li, W.-C. & Soffe, S. R. Stimulation of single, possible CHX10 hindbrain neurons turns swimming on and off in young Xenopus tadpoles. Front. Cell. Neurosci. 13, 47 (2019).
pubmed: 30873004
pmcid: 6401594
doi: 10.3389/fncel.2019.00047
Arrenberg, A. B., Del Bene, F. & Baier, H. Optical control of zebrafish behavior with halorhodopsin. Proc. Natl Acad. Sci. USA 106, 17968–17973 (2009).
pubmed: 19805086
pmcid: 2764931
doi: 10.1073/pnas.0906252106
Hägglund, M., Borgius, L., Dougherty, K. J. & Kiehn, O. Activation of groups of excitatory neurons in the mammalian spinal cord or hindbrain evokes locomotion. Nat. Neurosci. 13, 246–252 (2010).
pubmed: 20081850
doi: 10.1038/nn.2482
Kyriakatos, A. et al. Initiation of locomotion in adult zebrafish. J. Neurosci. 31, 8422–8431 (2011).
pubmed: 21653846
pmcid: 6623330
doi: 10.1523/JNEUROSCI.1012-11.2011
Buchanan, J. T. Swimming rhythm generation in the caudal hindbrain of the lamprey. J. Neurophysiol. 119, 1681–1692 (2018).
pubmed: 29364070
pmcid: 6008085
doi: 10.1152/jn.00851.2017
Gahtan, E. & O’Malley, D. M. Visually guided injection of identified reticulospinal neurons in zebrafish: a survey of spinal arborization patterns. J. Comp. Neurol. 459, 186–200 (2003).
pubmed: 12640669
doi: 10.1002/cne.10621
Skinner, R. D., Garcia-Rill, E., Griffin, S., Nelson, R. & Fitzgerald, J. A. Interstitial nucleus of Cajal (INC) projections to the region of Probst’s tract. Brain Res. Bull. 13, 613–621 (1984).
pubmed: 6518395
doi: 10.1016/0361-9230(84)90192-8
Wen, L. et al. Visualization of monoaminergic neurons and neurotoxicity of MPTP in live transgenic zebrafish. Dev. Biol. 314, 84–92 (2008).
pubmed: 18164283
doi: 10.1016/j.ydbio.2007.11.012
Koyama, M., Kinkhabwala, A., Satou, C., Higashijima, S. & Fetcho, J. Mapping a sensory-motor network onto a structural and functional ground plan in the hindbrain. Proc. Natl Acad. Sci. USA 108, 1170–1175 (2011).
pubmed: 21199937
pmcid: 3024692
doi: 10.1073/pnas.1012189108
Antinucci, P. et al. A calibrated optogenetic toolbox of stable zebrafish opsin lines. eLife 9, e54937 (2020).
pubmed: 32216873
pmcid: 7170653
doi: 10.7554/eLife.54937
Scott, E. K. et al. Targeting neural circuitry in zebrafish using GAL4 enhancer trapping. Nat. Methods 4, 323–326 (2007).
pubmed: 17369834
doi: 10.1038/nmeth1033
Halloran, M. C. et al. Laser-induced gene expression in specific cells of transgenic zebrafish. Dev. Camb. Engl. 127, 1953–1960 (2000).
Asakawa, K. et al. Genetic dissection of neural circuits by Tol2 transposon-mediated Gal4 gene and enhancer trapping in zebrafish. Proc. Natl Acad. Sci. USA 105, 1255–1260 (2008).
pubmed: 18202183
pmcid: 2234125
doi: 10.1073/pnas.0704963105
Bindels, D. S. et al. mScarlet: a bright monomeric red fluorescent protein for cellular imaging. Nat. Methods 14, 53–56 (2017).
pubmed: 27869816
doi: 10.1038/nmeth.4074
Perelmuter, J. T. & Forlano, P. M. Connectivity and ultrastructure of dopaminergic innervation of the inner ear and auditory efferent system of a vocal fish. J. Comp. Neurol. 525, 2090–2108 (2017).
pubmed: 28118481
doi: 10.1002/cne.24177
Lovett-Barron, M. et al. Ancestral circuits for the coordinated modulation of brain state. Cell 171, 1411–1423 (2017).
pubmed: 29103613
pmcid: 5725395
doi: 10.1016/j.cell.2017.10.021
Ryczko, D. et al. A descending dopamine pathway conserved from basal vertebrates to mammals. Proc. Natl Acad. Sci. USA 113, E2440–E2449 (2016).
pubmed: 27071118
pmcid: 4855556
doi: 10.1073/pnas.1600684113
Pachitariu, M. et al. Suite2p: beyond 10,000 neurons with standard two-photon microscopy. Preprint at bioRxiv https://doi.org/10.1101/061507 (2017).
Lucy, L. B. An iterative technique for the rectification of observed distributions. Astron. J. 79, 745 (1974).
doi: 10.1086/111605
Sage, D. et al. DeconvolutionLab2: an open-source software for deconvolution microscopy. Methods 115, 28–41 (2017).
pubmed: 28057586
doi: 10.1016/j.ymeth.2016.12.015
Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods 18, 100–106 (2021).
pubmed: 33318659
doi: 10.1038/s41592-020-01018-x