The mesencephalic locomotor region recruits V2a reticulospinal neurons to drive forward locomotion in larval zebrafish.


Journal

Nature neuroscience
ISSN: 1546-1726
Titre abrégé: Nat Neurosci
Pays: United States
ID NLM: 9809671

Informations de publication

Date de publication:
10 2023
Historique:
received: 02 03 2022
accepted: 24 07 2023
medline: 4 10 2023
pubmed: 5 9 2023
entrez: 4 9 2023
Statut: ppublish

Résumé

The mesencephalic locomotor region (MLR) is a brain stem area whose stimulation triggers graded forward locomotion. How MLR neurons recruit downstream vsx2

Identifiants

pubmed: 37667039
doi: 10.1038/s41593-023-01418-0
pii: 10.1038/s41593-023-01418-0
pmc: PMC10545542
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1775-1790

Subventions

Organisme : NINDS NIH HHS
ID : U01 NS094296
Pays : United States
Organisme : NINDS NIH HHS
ID : U19 NS104653
Pays : United States
Organisme : NINDS NIH HHS
ID : UF1 NS108213
Pays : United States

Informations de copyright

© 2023. The Author(s).

Références

Kiehn, O. Decoding the organization of spinal circuits that control locomotion. Nat. Rev. Neurosci. 17, 224–238 (2016).
pubmed: 26935168 pmcid: 4844028 doi: 10.1038/nrn.2016.9
Grillner, S., Wallén, P., Saitoh, K., Kozlov, A. & Robertson, B. Neural bases of goal-directed locomotion in vertebrates—an overview. Brain Res. Rev. 57, 2–12 (2008).
pubmed: 17916382 doi: 10.1016/j.brainresrev.2007.06.027
Ruder, L. & Arber, S. Brainstem circuits controlling action diversification. Annu. Rev. Neurosci. 42, 485–504 (2019).
pubmed: 31283898 doi: 10.1146/annurev-neuro-070918-050201
Deliagina, T. G., Zelenin, P. V., Fagerstedt, P., Grillner, S. & Orlovsky, G. N. Activity of reticulospinal neurons during locomotion in the freely behaving lamprey. J. Neurophysiol. 83, 853–863 (2000).
pubmed: 10669499 doi: 10.1152/jn.2000.83.2.853
Zelenin, P. V. Reticulospinal neurons controlling forward and backward swimming in the lamprey. J. Neurophysiol. 105, 1361–1371 (2011).
pubmed: 21248057 doi: 10.1152/jn.00887.2010
Juvin, L. et al. A specific population of reticulospinal neurons controls the termination of locomotion. Cell Rep. 15, 2377–2386 (2016).
pubmed: 27264174 doi: 10.1016/j.celrep.2016.05.029
Orlovsky, G. N., Deliagina, T. G. & Wallén, P. Vestibular control of swimming in lamprey. I. Responses of reticulospinal neurons to roll and pitch. Exp. Brain Res. 90, 479–488 (1992).
pubmed: 1426108 doi: 10.1007/BF00230930
Shik, M. L., Severin, F. V. & Orlovsky, G. N. Control of walking and running by means of electrical stimulation of the mesencephalon. Electroencephalogr. Clin. Neurophysiol. 26, 549 (1969).
pubmed: 4181500
Ryczko, D. The mesencephalic locomotor region: multiple cell types, multiple behavioral roles, and multiple implications for disease. Neuroscientist https://doi.org/10.1177/10738584221139136 (2022).
doi: 10.1177/10738584221139136 pubmed: 36575956
Ryczko, D. & Dubuc, R. The multifunctional mesencephalic locomotor region. Curr. Pharm. Des. 19, 4448–4470 (2013).
pubmed: 23360276 doi: 10.2174/1381612811319240011
Garcia-Rill, E., Skinner, R. D. & Fitzgerald, J. A. Chemical activation of the mesencephalic locomotor region. Brain Res. 330, 43–54 (1985).
pubmed: 3986540 doi: 10.1016/0006-8993(85)90006-X
Capelli, P., Pivetta, C., Soledad Esposito, M. & Arber, S. Locomotor speed control circuits in the caudal brainstem. Nature 551, 373–377 (2017).
pubmed: 29059682 doi: 10.1038/nature24064
Ryczko, D., Auclair, F., Cabelguen, J.-M. & Dubuc, R. The mesencephalic locomotor region sends a bilateral glutamatergic drive to hindbrain reticulospinal neurons in a tetrapod. J. Comp. Neurol. 524, 1361–1383 (2016).
pubmed: 26470600 doi: 10.1002/cne.23911
Steeves, J. D. & Jordan, L. M. Autoradiographic demonstration of the projections from the mesencephalic locomotor region. Brain Res. 307, 263–276 (1984).
pubmed: 6466996 doi: 10.1016/0006-8993(84)90480-3
Garcia-Rill, E., Skinner, R. D., Gilmore, S. A. & Owings, R. Connections of the mesencephalic locomotor region (MLR) II. Afferents and efferents. Brain Res. Bull. 10, 63–71 (1983).
pubmed: 6186345 doi: 10.1016/0361-9230(83)90076-X
Cepeda-Nieto, A. C., Pfaff, S. L. & Varela-Echavarría, A. Homeodomain transcription factors in the development of subsets of hindbrain reticulospinal neurons. Mol. Cell. Neurosci. 28, 30–41 (2005).
pubmed: 15607939 doi: 10.1016/j.mcn.2004.06.016
Bretzner, F. & Brownstone, R. M. Lhx3-Chx10 reticulospinal neurons in locomotor circuits. J. Neurosci. 33, 14681–14692 (2013).
pubmed: 24027269 pmcid: 6705172 doi: 10.1523/JNEUROSCI.5231-12.2013
Kimura, Y. et al. Hindbrain V2a neurons in the excitation of spinal locomotor circuits during zebrafish swimming. Curr. Biol. 23, 843–849 (2013).
pubmed: 23623549 doi: 10.1016/j.cub.2013.03.066
Cregg, J. M. et al. Brainstem neurons that command mammalian locomotor asymmetries. Nat. Neurosci. 23, 730–740 (2020).
pubmed: 32393896 pmcid: 7610510 doi: 10.1038/s41593-020-0633-7
Usseglio, G., Gatier, E., Heuzé, A., Hérent, C. & Bouvier, J. Control of orienting movements and locomotion by projection-defined subsets of brainstem V2a neurons. Curr. Biol. 30, 4665–4681 (2020).
pubmed: 33007251 doi: 10.1016/j.cub.2020.09.014
Huang, K.-H., Ahrens, M. B., Dunn, T. W. & Engert, F. Spinal projection neurons control turning behaviors in zebrafish. Curr. Biol. 23, 1566–1573 (2013).
pubmed: 23910662 pmcid: 3752323 doi: 10.1016/j.cub.2013.06.044
Bouvier, J. et al. Descending command neurons in the brainstem that halt locomotion. Cell 163, 1191–1203 (2015).
pubmed: 26590422 pmcid: 4899047 doi: 10.1016/j.cell.2015.10.074
Watson, C., Bartholomaeus, C. & Puelles, L. Time for radical changes in brain stem nomenclature—applying the lessons from developmental gene patterns. Front. Neuroanat. 13, 10 (2019).
pubmed: 30809133 pmcid: 6380082 doi: 10.3389/fnana.2019.00010
Kashin, S. M., Feldman, A. G. & Orlovsky, G. N. Locomotion of fish evoked by electrical stimulation of the brain. Brain Res. 82, 41–47 (1974).
pubmed: 4611595 doi: 10.1016/0006-8993(74)90891-9
Severi, K. E. et al. Neural control and modulation of swimming speed in the larval zebrafish. Neuron 83, 692–707 (2014).
pubmed: 25066084 pmcid: 4126853 doi: 10.1016/j.neuron.2014.06.032
Berg, E. M. et al. Brainstem circuits encoding start, speed, and duration of swimming in adult zebrafish. Neuron 111, 372–386 (2023).
pubmed: 36413988 doi: 10.1016/j.neuron.2022.10.034
Green, M. H. & Hale, M. E. Activity of pectoral fin motoneurons during two swimming gaits in the larval zebrafish (Danio rerio) and localization of upstream circuit elements. J. Neurophysiol. 108, 3393–3402 (2012).
pubmed: 23034362 doi: 10.1152/jn.00623.2012
Dunn, T. W. et al. Brain-wide mapping of neural activity controlling zebrafish exploratory locomotion. eLife 5, e12741 (2016).
pubmed: 27003593 pmcid: 4841782 doi: 10.7554/eLife.12741
Kimmel, C. B., Powell, S. L. & Metcalfe, W. K. Brain neurons which project to the spinal cord in young larvae of the zebrafish. J. Comp. Neurol. 205, 112–127 (1982).
pubmed: 7076887 doi: 10.1002/cne.902050203
Freeman, J. et al. Mapping brain activity at scale with cluster computing. Nat. Methods 11, 941–950 (2014).
pubmed: 25068736 doi: 10.1038/nmeth.3041
Kunst, M. et al. A cellular-resolution atlas of the larval zebrafish brain. Neuron 103, 21–38 (2019).
pubmed: 31147152 doi: 10.1016/j.neuron.2019.04.034
Le Ray, D. et al. Nicotinic activation of reticulospinal cells involved in the control of swimming in lampreys. Eur. J. Neurosci. 17, 137–148 (2003).
pubmed: 12534977 doi: 10.1046/j.1460-9568.2003.02417.x
Fougère, M., Flaive, A., Frigon, A. & Ryczko, D. Descending dopaminergic control of brainstem locomotor circuits. Curr. Opin. Physiol. 8, 30–35 (2019).
doi: 10.1016/j.cophys.2018.12.004
Kimura, Y., Hisano, Y., Kawahara, A. & Higashijima, S. Efficient generation of knock-in transgenic zebrafish carrying reporter/driver genes by CRISPR/Cas9-mediated genome engineering. Sci. Rep. 4, 6545 (2014).
pubmed: 25293390 pmcid: 4189020 doi: 10.1038/srep06545
Markov, D. A., Petrucco, L., Kist, A. M. & Portugues, R. A cerebellar internal model calibrates a feedback controller involved in sensorimotor control. Nat. Commun. 12, 6694 (2021).
pubmed: 34795244 pmcid: 8602262 doi: 10.1038/s41467-021-26988-0
Sirota, M. G., Di Prisco, G. V. & Dubuc, R. Stimulation of the mesencephalic locomotor region elicits controlled swimming in semi-intact lampreys. Eur. J. Neurosci. 12, 4081–4092 (2000).
pubmed: 11069605 doi: 10.1046/j.1460-9568.2000.00301.x
Cabelguen, J.-M., Bourcier-Lucas, C. & Dubuc, R. Bimodal locomotion elicited by electrical stimulation of the midbrain in the salamander Notophthalmus viridescens. J. Neurosci. 23, 2434–2439 (2003).
pubmed: 12657703 pmcid: 6741995 doi: 10.1523/JNEUROSCI.23-06-02434.2003
Brocard, F. & Dubuc, R. Differential contribution of reticulospinal cells to the control of locomotion induced by the mesencephalic locomotor region. J. Neurophysiol. 90, 1714–1727 (2003).
pubmed: 12736238 doi: 10.1152/jn.00202.2003
Brocard, F. et al. The transformation of a unilateral locomotor command into a symmetrical bilateral activation in the brainstem. J. Neurosci. 30, 523–533 (2010).
pubmed: 20071515 pmcid: 6632989 doi: 10.1523/JNEUROSCI.3433-09.2010
Antinucci, P., Folgueira, M. & Bianco, I. H. Pretectal neurons control hunting behaviour. eLife 8, e48114 (2019).
pubmed: 31591961 pmcid: 6783268 doi: 10.7554/eLife.48114
Pujala, A. & Koyama, M. Chronology-based architecture of descending circuits that underlie the development of locomotor repertoire after birth. eLife 8, e42135 (2019).
pubmed: 30801247 pmcid: 6449084 doi: 10.7554/eLife.42135
Chopek, J. W., Zhang, Y. & Brownstone, R. M. Intrinsic brainstem circuits comprised of Chx10-expressing neurons contribute to reticulospinal output in mice. J. Neurophysiol. 126, 1978–1990 (2021).
pubmed: 34669520 pmcid: 8715053 doi: 10.1152/jn.00322.2021
Kimura, Y., Okamura, Y. & Higashijima, S. alx, a zebrafish homolog of Chx10, marks ipsilateral descending excitatory interneurons that participate in the regulation of spinal locomotor circuits. J. Neurosci. 26, 5684–5697 (2006).
pubmed: 16723525 pmcid: 6675258 doi: 10.1523/JNEUROSCI.4993-05.2006
Zou, M., Friedrich, R. W. & Bianco, I. H. in Zebrafish: Methods and Protocols (eds Kawakami, K. et al.) 259–269 (Springer, 2016).
Bouchard, M. B. et al. Swept confocally-aligned planar excitation (SCAPE) microscopy for high speed volumetric imaging of behaving organisms. Nat. Photonics 9, 113–119 (2015).
pubmed: 25663846 pmcid: 4317333 doi: 10.1038/nphoton.2014.323
Voleti, V. et al. Real-time volumetric microscopy of in vivo dynamics and large-scale samples with SCAPE 2.0. Nat. Methods 16, 1054–1062 (2019).
pubmed: 31562489 pmcid: 6885017 doi: 10.1038/s41592-019-0579-4
Friedrich, J., Zhou, P. & Paninski, L. Fast online deconvolution of calcium imaging data. PLoS Comput. Biol. 13, e1005423 (2017).
pubmed: 28291787 pmcid: 5370160 doi: 10.1371/journal.pcbi.1005423
Caggiano, V. et al. Midbrain circuits that set locomotor speed and gait selection. Nature 553, 455–460 (2018).
pubmed: 29342142 pmcid: 5937258 doi: 10.1038/nature25448
Carvalho, M. M. et al. A brainstem locomotor circuit drives the activity of speed cells in the medial entorhinal cortex. Cell Rep. 32, 108123 (2020).
pubmed: 32905779 pmcid: 7487772 doi: 10.1016/j.celrep.2020.108123
Chen, X. et al. Granger causality analysis for calcium transients in neuronal networks, challenges and improvements. eLife 12, e81279 (2023).
pubmed: 36749019 pmcid: 10017105 doi: 10.7554/eLife.81279
Kobayashi, N., Yoshida, M., Matsumoto, N. & Uematsu, K. Artificial control of swimming in goldfish by brain stimulation: confirmation of the midbrain nuclei as the swimming center. Neurosci. Lett. 452, 42–46 (2009).
pubmed: 19428999 doi: 10.1016/j.neulet.2009.01.035
Thiele, T. R., Donovan, J. C. & Baier, H. Descending control of swim posture by a midbrain nucleus in zebrafish. Neuron 83, 679–691 (2014).
pubmed: 25066082 pmcid: 4157661 doi: 10.1016/j.neuron.2014.04.018
Rajan, G. et al. Evolutionary divergence of locomotion in two related vertebrate species. Cell Rep. 38, 110585 (2022).
pubmed: 35354040 doi: 10.1016/j.celrep.2022.110585
Gahtan, E., Tanger, P. & Baier, H. Visual prey capture in larval zebrafish is controlled by identified reticulospinal neurons downstream of the tectum. J. Neurosci. 25, 9294–9303 (2005).
pubmed: 16207889 pmcid: 6725764 doi: 10.1523/JNEUROSCI.2678-05.2005
Sugioka, T., Tanimoto, M. & Higashijima, S. Biomechanics and neural circuits for vestibular-induced fine postural control in larval zebrafish. Nat. Commun. 14, 1217 (2023).
pubmed: 36898983 pmcid: 10006170 doi: 10.1038/s41467-023-36682-y
Wang, W.-C. & McLean, D. L. Selective responses to tonic descending commands by temporal summation in a spinal motor pool. Neuron 83, 708–721 (2014).
pubmed: 25066087 pmcid: 4126198 doi: 10.1016/j.neuron.2014.06.021
Orger, M. B., Kampff, A. R., Severi, K. E., Bollmann, J. H. & Engert, F. Control of visually guided behavior by distinct populations of spinal projection neurons. Nat. Neurosci. 11, 327–333 (2008).
pubmed: 18264094 pmcid: 2894808 doi: 10.1038/nn2048
Fukushima, K. The interstitial nucleus of Cajal and its role in the control of movements of head and eyes. Prog. Neurobiol. 29, 107–192 (1987).
pubmed: 3108957 doi: 10.1016/0301-0082(87)90016-5
Wang, Z., Maunze, B., Wang, Y., Tsoulfas, P. & Blackmore, M. G. Global connectivity and function of descending spinal input revealed by 3D microscopy and retrograde transduction. J. Neurosci. 38, 10566–10581 (2018).
pubmed: 30341180 pmcid: 6284107 doi: 10.1523/JNEUROSCI.1196-18.2018
Klier, E. M., Wang, H., Constantin, A. G. & Crawford, J. D. Midbrain control of three-dimensional head orientation. Science 295, 1314–1316 (2002).
pubmed: 11847347 doi: 10.1126/science.1067300
Farshadmanesh, F. et al. Neck muscle synergies during stimulation and inactivation of the interstitial nucleus of Cajal (INC). J. Neurophysiol. 100, 1677–1685 (2008).
pubmed: 18579660 doi: 10.1152/jn.90363.2008
Berezovskiĭ, V. K. [The participation of the interstitial nucleus of Cajal in initiating locomotion in cats and rats]. Neirofiziologiia 23, 368–371 (1991).
pubmed: 1881493
Mirat, O., Sternberg, J., Severi, K. & Wyart, C. ZebraZoom: an automated program for high-throughput behavioral analysis and categorization. Front. Neural Circuits 7, 107 (2013).
pubmed: 23781175 pmcid: 3679480 doi: 10.3389/fncir.2013.00107
Gariépy, J.-F. et al. Specific neural substrate linking respiration to locomotion. Proc. Natl Acad. Sci. USA 109, E84–E92 (2012).
pubmed: 22160700 doi: 10.1073/pnas.1113002109
Opris, I. et al. Activation of brainstem neurons during mesencephalic locomotor region-evoked locomotion in the cat. Front. Syst. Neurosci. 13, 69 (2019).
pubmed: 31798423 pmcid: 6868058 doi: 10.3389/fnsys.2019.00069
Ryczko, D., Simon, A. & Ijspeert, A. J. Walking with salamanders: from molecules to biorobotics. Trends Neurosci. 43, 916–930 (2020).
pubmed: 33010947 doi: 10.1016/j.tins.2020.08.006
Oueghlani, Z. et al. Brainstem steering of locomotor activity in the newborn rat. J. Neurosci. 38, 7725–7740 (2018).
pubmed: 30037828 pmcid: 6705974 doi: 10.1523/JNEUROSCI.1074-18.2018
Schwenkgrub, J., Harrell, E. R., Bathellier, B. & Bouvier, J. Deep imaging in the brainstem reveals functional heterogeneity in V2a neurons controlling locomotion. Sci. Adv. 6, eabc6309 (2020).
pubmed: 33277252 pmcid: 7821901 doi: 10.1126/sciadv.abc6309
Kinkhabwala, A. et al. A structural and functional ground plan for neurons in the hindbrain of zebrafish. Proc. Natl Acad. Sci. USA 108, 1164–1169 (2011).
pubmed: 21199947 pmcid: 3024665 doi: 10.1073/pnas.1012185108
Li, W.-C. & Soffe, S. R. Stimulation of single, possible CHX10 hindbrain neurons turns swimming on and off in young Xenopus tadpoles. Front. Cell. Neurosci. 13, 47 (2019).
pubmed: 30873004 pmcid: 6401594 doi: 10.3389/fncel.2019.00047
Arrenberg, A. B., Del Bene, F. & Baier, H. Optical control of zebrafish behavior with halorhodopsin. Proc. Natl Acad. Sci. USA 106, 17968–17973 (2009).
pubmed: 19805086 pmcid: 2764931 doi: 10.1073/pnas.0906252106
Hägglund, M., Borgius, L., Dougherty, K. J. & Kiehn, O. Activation of groups of excitatory neurons in the mammalian spinal cord or hindbrain evokes locomotion. Nat. Neurosci. 13, 246–252 (2010).
pubmed: 20081850 doi: 10.1038/nn.2482
Kyriakatos, A. et al. Initiation of locomotion in adult zebrafish. J. Neurosci. 31, 8422–8431 (2011).
pubmed: 21653846 pmcid: 6623330 doi: 10.1523/JNEUROSCI.1012-11.2011
Buchanan, J. T. Swimming rhythm generation in the caudal hindbrain of the lamprey. J. Neurophysiol. 119, 1681–1692 (2018).
pubmed: 29364070 pmcid: 6008085 doi: 10.1152/jn.00851.2017
Gahtan, E. & O’Malley, D. M. Visually guided injection of identified reticulospinal neurons in zebrafish: a survey of spinal arborization patterns. J. Comp. Neurol. 459, 186–200 (2003).
pubmed: 12640669 doi: 10.1002/cne.10621
Skinner, R. D., Garcia-Rill, E., Griffin, S., Nelson, R. & Fitzgerald, J. A. Interstitial nucleus of Cajal (INC) projections to the region of Probst’s tract. Brain Res. Bull. 13, 613–621 (1984).
pubmed: 6518395 doi: 10.1016/0361-9230(84)90192-8
Wen, L. et al. Visualization of monoaminergic neurons and neurotoxicity of MPTP in live transgenic zebrafish. Dev. Biol. 314, 84–92 (2008).
pubmed: 18164283 doi: 10.1016/j.ydbio.2007.11.012
Koyama, M., Kinkhabwala, A., Satou, C., Higashijima, S. & Fetcho, J. Mapping a sensory-motor network onto a structural and functional ground plan in the hindbrain. Proc. Natl Acad. Sci. USA 108, 1170–1175 (2011).
pubmed: 21199937 pmcid: 3024692 doi: 10.1073/pnas.1012189108
Antinucci, P. et al. A calibrated optogenetic toolbox of stable zebrafish opsin lines. eLife 9, e54937 (2020).
pubmed: 32216873 pmcid: 7170653 doi: 10.7554/eLife.54937
Scott, E. K. et al. Targeting neural circuitry in zebrafish using GAL4 enhancer trapping. Nat. Methods 4, 323–326 (2007).
pubmed: 17369834 doi: 10.1038/nmeth1033
Halloran, M. C. et al. Laser-induced gene expression in specific cells of transgenic zebrafish. Dev. Camb. Engl. 127, 1953–1960 (2000).
Asakawa, K. et al. Genetic dissection of neural circuits by Tol2 transposon-mediated Gal4 gene and enhancer trapping in zebrafish. Proc. Natl Acad. Sci. USA 105, 1255–1260 (2008).
pubmed: 18202183 pmcid: 2234125 doi: 10.1073/pnas.0704963105
Bindels, D. S. et al. mScarlet: a bright monomeric red fluorescent protein for cellular imaging. Nat. Methods 14, 53–56 (2017).
pubmed: 27869816 doi: 10.1038/nmeth.4074
Perelmuter, J. T. & Forlano, P. M. Connectivity and ultrastructure of dopaminergic innervation of the inner ear and auditory efferent system of a vocal fish. J. Comp. Neurol. 525, 2090–2108 (2017).
pubmed: 28118481 doi: 10.1002/cne.24177
Lovett-Barron, M. et al. Ancestral circuits for the coordinated modulation of brain state. Cell 171, 1411–1423 (2017).
pubmed: 29103613 pmcid: 5725395 doi: 10.1016/j.cell.2017.10.021
Ryczko, D. et al. A descending dopamine pathway conserved from basal vertebrates to mammals. Proc. Natl Acad. Sci. USA 113, E2440–E2449 (2016).
pubmed: 27071118 pmcid: 4855556 doi: 10.1073/pnas.1600684113
Pachitariu, M. et al. Suite2p: beyond 10,000 neurons with standard two-photon microscopy. Preprint at bioRxiv https://doi.org/10.1101/061507 (2017).
Lucy, L. B. An iterative technique for the rectification of observed distributions. Astron. J. 79, 745 (1974).
doi: 10.1086/111605
Sage, D. et al. DeconvolutionLab2: an open-source software for deconvolution microscopy. Methods 115, 28–41 (2017).
pubmed: 28057586 doi: 10.1016/j.ymeth.2016.12.015
Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods 18, 100–106 (2021).
pubmed: 33318659 doi: 10.1038/s41592-020-01018-x

Auteurs

Martin Carbo-Tano (M)

Sorbonne Université, Paris Brain Institute (Institut du Cerveau, ICM), Institut National de la Santé et de la Recherche Médicale U1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Assistance Publique-Hôpitaux de Paris, Campus Hospitalier Pitié-Salpêtrière, Paris, France.

Mathilde Lapoix (M)

Sorbonne Université, Paris Brain Institute (Institut du Cerveau, ICM), Institut National de la Santé et de la Recherche Médicale U1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Assistance Publique-Hôpitaux de Paris, Campus Hospitalier Pitié-Salpêtrière, Paris, France.

Xinyu Jia (X)

Sorbonne Université, Paris Brain Institute (Institut du Cerveau, ICM), Institut National de la Santé et de la Recherche Médicale U1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Assistance Publique-Hôpitaux de Paris, Campus Hospitalier Pitié-Salpêtrière, Paris, France.

Olivier Thouvenin (O)

Institut Langevin, École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris, Paris Sciences et Lettres, Centre National de la Recherche Scientifique, Paris, France.

Marco Pascucci (M)

Sorbonne Université, Paris Brain Institute (Institut du Cerveau, ICM), Institut National de la Santé et de la Recherche Médicale U1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Assistance Publique-Hôpitaux de Paris, Campus Hospitalier Pitié-Salpêtrière, Paris, France.
Université Paris-Saclay, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Centre National de la Recherche Scientifique, NeuroSpin, Baobab, Centre d'études de Saclay, Gif-sur-Yvette, France.
The American University of Paris, Paris, France.

François Auclair (F)

Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, Quebec, Canada.

Feng B Quan (FB)

Sorbonne Université, Paris Brain Institute (Institut du Cerveau, ICM), Institut National de la Santé et de la Recherche Médicale U1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Assistance Publique-Hôpitaux de Paris, Campus Hospitalier Pitié-Salpêtrière, Paris, France.

Shahad Albadri (S)

Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France.

Vernie Aguda (V)

Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada.

Younes Farouj (Y)

Institute of Neuroscience, Technical University of Munich, Munich, Germany.

Elizabeth M C Hillman (EMC)

Laboratory for Functional Optical Imaging, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
Department of Biomedical Engineering, Columbia University, New York, NY, USA.
Kavli Institute for Brain Science, Columbia University, New York, NY, USA.

Ruben Portugues (R)

Institute of Neuroscience, Technical University of Munich, Munich, Germany.
Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.

Filippo Del Bene (F)

Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France.

Tod R Thiele (TR)

Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada.

Réjean Dubuc (R)

Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, Quebec, Canada. rejean.dubuc@gmail.com.
Groupe de Recherche en Activité Physique Adaptée, Department of Exercise Science, Université du Québec à Montréal, Montréal, Quebec, Canada. rejean.dubuc@gmail.com.

Claire Wyart (C)

Sorbonne Université, Paris Brain Institute (Institut du Cerveau, ICM), Institut National de la Santé et de la Recherche Médicale U1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Assistance Publique-Hôpitaux de Paris, Campus Hospitalier Pitié-Salpêtrière, Paris, France. claire.wyart@icm-institute.org.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH