Vascular regenerative cells in cardiometabolic disease.


Journal

Current opinion in cardiology
ISSN: 1531-7080
Titre abrégé: Curr Opin Cardiol
Pays: United States
ID NLM: 8608087

Informations de publication

Date de publication:
01 Nov 2023
Historique:
pubmed: 5 9 2023
medline: 5 9 2023
entrez: 5 9 2023
Statut: ppublish

Résumé

This review will provide an overview of the recent literature linking the pathophysiology of cardiometabolic disease with the depletion and dysfunction of circulating vascular regenerative (VR) cell content. Moreover, we provide rationale for the use of VR cells as a biomarker for cardiovascular risk and the use of pharmacological agents to improve VR cell content. Recent studies demonstrate the potential of VR cells as a biomarker of cardiovascular risk and as a therapeutic target. Notably, lipid-lowering agents, antihyperglycemic therapies such as sodium-glucose cotransporter-2 inhibitors and glucagon-like peptide-1 receptor agonists, as well as exercise and weight loss, have all been found to improve VR cell content, providing mechanistic evidence supporting a role in mitigating adverse cardiovascular outcomes in people with cardiometabolic-based disease. The importance of VR cells as a biomarker in assessing cardiovascular risk is becoming increasingly apparent. This review highlights recent literature supporting the accurate use of VR cell characterization to monitor the capacity for vessel repair and novel strategies to improve vessel health. Future research is required to validate and optimize these emerging approaches.

Identifiants

pubmed: 37668181
doi: 10.1097/HCO.0000000000001089
pii: 00001573-990000000-00100
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

546-551

Informations de copyright

Copyright © 2023 Wolters Kluwer Health, Inc. All rights reserved.

Références

Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 2015; 373:2117–2128.
McMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med 2019; 381:1995–2008.
Husain M, Birkenfeld AL, Donsmark M, et al. Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 2019; 381:841–851.
Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2016; 375:311–322.
Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997; 275:964–967.
Terenzi DC, Trac JZ, Teoh H, et al. Vascular regenerative cell exhaustion in diabetes: translational opportunities to mitigate cardiometabolic risk. Trends Mol Med 2019; 25:640–655.
Hess DA, Verma S, Bhatt D, et al. Vascular repair and regeneration in cardiometabolic diseases. Eur Heart J 2022; 43:450–459.
Fadini GP, Ferraro F, Quaini F, et al. Concise review: diabetes, the bone marrow niche, and impaired vascular regeneration. Stem Cells Transl Med 2014; 3:949–957.
Asahara T, Masuda H, Takahashi T, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 1999; 85:221–228.
Hill JM, Zalos G, Halcox JPJ, et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 2003; 348:593–600.
Werner N, Kosiol S, Schiegl T, et al. Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med 2005; 353:999–1007.
Jialal I, Fadini GP, Pollock K, et al. Circulating levels of endothelial progenitor cell mobilizing factors in the metabolic syndrome. Am J Cardiol 2010; 106:1606–1608.
Cesari F, Sofi F, Gori AM, et al. Physical activity and circulating endothelial progenitor cells: an intervention study. Eur J Clin Invest 2012; 42:927–932.
Chen JZ, Zhang FR, Tao QM, et al. Number and activity of endothelial progenitor cells from peripheral blood in patients with hypercholesterolaemia. Clin Sci 2004; 107:273–280.
Vasa M, Fichtlscherer S, Aicher A, et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res 2001; 89:E1–E7.
Kondo T, Hayashi M, Takeshita K, et al. Smoking cessation rapidly increases circulating progenitor cells in peripheral blood in chronic smokers. Arterioscler Thromb Vasc Biol 2004; 24:1442–1447.
Fadini GP, Spinetti G, Santopaolo M et al. Impaired regeneration contributes to poor outcomes in diabetic peripheral artery disease. Arterioscler Thromb Vasc Biol 2020;40:34−44.
Fadini G, de Kreutzenberg S, Coracina A, et al. Circulating CD34+ cells, metabolic syndrome, and cardiovascular risk. Eur Heart J 2006; 27:2247–2255.
Fadini GP, Mehta A, Dhindsa DS, et al. Circulating stem cells and cardiovascular outcomes: from basic science to the clinic. Eur Heart J 2020; 41:4271–4282.
Fadini GP, Sartore S, Albiero M, et al. Number and function of endothelial progenitor cells as a marker of severity for diabetic vasculopathy. Arterioscler Thromb Vasc Biol 2006; 26:2140–2146.
Rigato M, Bittante C, Albiero M, et al. Circulating progenitor cell count predicts microvascular outcomes in type 2 diabetic patients. J Clin Endocr 2015; 100:2666–2672.
Fadini GP, Rigato M, Cappellari R, et al. Long-term prediction of cardiovascular outcomes by circulating CD34+ and CD34+CD133+ stem cells in patients with type 2 diabetes. Diabetes Care 2017; 40:125–131.
Simoncini S, Toupance S, Labat C, et al. Functional impairment of endothelial colony forming cells (ECFC) in patients with severe atherosclerotic cardiovascular disease (ASCVD). Int J Mol Sci 2022; 23:8969.
Spadaccio C, Nenna A, Rose D, et al. The role of angiogenesis and arteriogenesis in myocardial infarction and coronary revascularization. J Cardiovasc Transl Res 2022; 15:1024–1048.
Fadini GP, Albiero M, De Kreutzenberg SV, et al. Diabetes impairs stem cell and proangiogenic cell mobilization in humans. Diabetes Care 2013; 36:943–949.
Terenzi DC, Al-Omran M, Quan A, et al. Circulating pro-vascular progenitor cell depletion during type 2 diabetes: translational insights into the prevention of ischemic complications in diabetes. J Am Coll Cardiol Basic Trans Sci 2019; 4:98–112.
Terenzi DC, Bakbak E, Trac JZ, et al. Isolation and characterization of circulating pro-vascular progenitor cell subsets from human whole blood samples. STAR Protoc 2021; 2:100311.
Capoccia BJ, Robson DL, Levac KD, et al. Revascularization of ischemic limbs after transplantation of human bone marrow cells with high aldehyde dehydrogenase activity. Blood 2009; 113:5340–5351.
Putman DM, Cooper TT, Sherman SE, et al. Expansion of umbilical cord blood aldehyde dehydrogenase expressing cells generates myeloid progenitor cells that stimulate limb revascularization. Stem Cells Transl Med 2017; 6:1607–1619.
Leclerc CJ, Cooper TT, Bell GI, et al. Decellularized adipose tissue scaffolds guide hematopoietic differentiation and stimulate vascular regeneration in a hindlimb ischemia model. Biomaterials 2021; 274:120867.
Qadura M, Terenzi DC, Verma S, et al. Concise review: cell therapy for critical limb ischemia: an integrated review of preclinical and clinical studies. Stem Cells 2018; 36:161–171.
Murphy C, Kanaganayagam GS, Jiang B, et al. Vascular dysfunction and reduced circulating endothelial progenitor cells in young healthy UK South Asian men. Arterioscler Thromb Vasc Biol 2007; 27:936–942.
Krishnaraj A, Bakbak E, Firoz I, et al. Regenerative cell exhaustion and cardiovascular risk in south Asians: a pilot study. J Am Coll Cardiol 2023; 81:1205.
Hess DA, Hegele RA. Linking diabetes with oxidative stress, adipokines, and impaired endothelial precursor cell function. Can J Cardiol 2012; 28:629–630.
Oelze M, Kröller-Schön S, Welschof P, et al. The sodium-glucose co-transporter 2 inhibitor empagliflozin improves diabetes-induced vascular dysfunction in the streptozotocin diabetes rat model by interfering with oxidative stress and glucotoxicity. PLoS One 2014; 9:e112394.
Cappellari R, D’Anna M, Menegazzo L, et al. Diabetes mellitus impairs circulating proangiogenic granulocytes. Diabetologia 2020; 63:1872–1884.
Chantzichristos VG, Agouridis AP, Moutzouri E, et al. Effect of rosuvastatin or its combination with omega-3 fatty acids on circulating CD34+ progenitor cells and on endothelial colony formation in patients with mixed dyslipidaemia. Atherosclerosis 2016; 251:240–247.
Calder PC. Omega-3 fatty acids and inflammatory processes. Nutrients 2010;2:355−74.
Fer M, Dréano Y, Lucas D, et al. Metabolism of eicosapentaenoic and docosahexaenoic acids by recombinant human cytochromes P450. Arch Biochem Biophys 2008; 471:116–125.
Preston Mason R. New insights into mechanisms of action for omega-3 fatty acids in atherothrombotic cardiovascular disease. Curr Atheroscler Rep 2019;21.
Aung T, Halsey J, Kromhout D, et al. Associations of omega-3 fatty acid supplement use with cardiovascular disease risks meta-analysis of 10 trials involving 77 917 individuals. JAMA Cardiol 2018; 3:225–234.
Bhatt DL, Steg PG, Miller M, et al. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N Engl J Med 2019; 380:11–22.
Herrington W, Staplin N, Wanner C, et al. Empagliflozin in patients with chronic kidney disease. N Engl J Med 2022; 388:117–127.
Anker SD, Butler J, Filippatos G, et al. Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med 2021; 385:1451–1461.
Packer M, Anker SD, Butler J, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med 2020; 383:1413–1424.
Hess DA, Terenzi DC, Trac JZ, et al. SGLT2 inhibition with empagliflozin increases circulating provascular progenitor cells in people with type 2 diabetes mellitus. Cell Metab 2019; 30:609–613.
Verma S, Mazer CD, Yan AT, et al. Effect of empagliflozin on left ventricular mass in patients with type 2 diabetes mellitus and coronary artery disease: the EMPA-HEART CardioLink-6 Randomized Clinical Trial. Circulation 2019; 140:1693–1702.
Bakbak E, Puar P, Krishnaraj A, et al. Empagliflozin reduced circulating pro-inflammatory precursor cell content in people without diabetes: a substudy of The EMPA-HEART 2 Cardiolink 6 Trial. J Am Coll Cardiol 2023; 81:2040–2040.
Bakbak E, Verma S, Krishnaraj A, et al. Empagliflozin improves circulating vascular regenerative cell content in people without diabetes but with cardiovascular risk factors. Am J Physiol Heart Circ Physiol 2023.
Connelly KA, Mazer CD, Puar P, et al. Empagliflozin and left ventricular remodeling in people without diabetes: primary results of the EMPA-HEART 2 CardioLink-7 Randomized Clinical Trial. Circulation 2023; 147:284–295.
Nandula SR, Kundu N, Awal HB, et al. Role of Canagliflozin on function of CD34+ve endothelial progenitor cells (EPC) in patients with type 2 diabetes. Cardiovasc Diabetol 2021; 20:44.
Marso SP, Bain SC, Consoli A, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 2016; 375:1834–1844.
Xie D, Li Y, Xu M, et al. Effects of dulaglutide on endothelial progenitor cells and arterial elasticity in patients with type 2 diabetes mellitus. Cardiovasc Diabetol 2022; 21:200.
Hess DA, Trac JZ, Glazer SA, et al. Vascular risk reduction in obesity through reduced granulocyte burden and improved angiogenic monocyte content following bariatric surgery. Cell Rep Med 2020; 1:100018.
Sforza A, Vigorelli V, Rurali E, et al. Liraglutide preserves CD34+ stem cells from dysfunction Induced by high glucose exposure. Cardiovasc Diabetol 2022; 21:51.
Schmid M, Kröpfl JM, Spengler CM. Changes in circulating stem and progenitor cell numbers following acute exercise in healthy human subjects: a systematic review and meta-analysis. Stem Cell Rev Rep 2021; 17:1091–1120.
Ferentinos P, Tsakirides C, Swainson M, et al. The impact of different forms of exercise on circulating endothelial progenitor cells in cardiovascular and metabolic disease. Eur J Appl Physiol 2022; 122:815–860.
Garvey WT, Frias JP, Jastreboff AM, et al. Tirzepatide once weekly for the treatment of obesity in people with type 2 diabetes (SURMOUNT-2): a double-blind, randomised, multicentre, placebo-controlled, phase 3 trial. The Lancet 2023; 402:613–626.

Auteurs

Ehab Bakbak (E)

Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto.
Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital.
Department of Pharmacology and Toxicology.

Aishwarya Krishnaraj (A)

Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto.
Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital.
Department of Pharmacology and Toxicology.

Brady Park (B)

Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto.
Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital.
Department of Pharmacology and Toxicology.

Subodh Verma (S)

Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto.
Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital.
Department of Pharmacology and Toxicology.
Department of Surgery, University of Toronto, Toronto.

David A Hess (DA)

Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto.
Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital.
Department of Pharmacology and Toxicology.
Department of Physiology and Pharmacology, Western University, London.
Molecular Medicine Research Laboratories, Robarts Research Institute, London, Ontario, Canada.

Classifications MeSH