Predictors for progression in amyotrophic lateral sclerosis associated to SOD1 mutation: insight from two population-based registries.


Journal

Journal of neurology
ISSN: 1432-1459
Titre abrégé: J Neurol
Pays: Germany
ID NLM: 0423161

Informations de publication

Date de publication:
Dec 2023
Historique:
received: 07 06 2023
accepted: 21 08 2023
revised: 19 08 2023
medline: 9 11 2023
pubmed: 5 9 2023
entrez: 5 9 2023
Statut: ppublish

Résumé

Uncovering distinct features and trajectories of amyotrophic lateral sclerosis (ALS) associated with SOD1 mutations (SOD1-ALS) can provide valuable insights for patient' counseling and stratification for trials, and interventions timing. Our study aims to pinpoint distinct clinical characteristics of SOD1-ALS by delving into genotype-phenotype correlations and factors that potentially impact disease progression. This is a retrospective observational study of a SOD1-ALS cohort from two Italian registers situated in the regions of Emilia-Romagna, Piedmont and Valle d'Aosta. Out of 2204 genotyped ALS patients, 2.5% carried SOD1 mutations, with a M:F ratio of 0.83. SOD1-ALS patients were younger, and more frequently reported a family history of ALS and/or FTD. SOD1-ALS had a longer survival compared to patients without ALS-associated gene mutations. However, here was considerable variability in survival across distinct SOD1 mutations, with an average survival of less than a year for the L39V, G42S, G73S, D91N mutations. Among SOD1-ALS, multivariate analysis showed that, alongside established clinical prognostic factors such as advanced age at onset and high progression rate at diagnosis, mutations located in exon 2 or within highly conserved gene positions predicted worse survival. Conversely, among comorbidities, cancer history was independently associated with longer survival. Within the context of an overall slower disease, SOD1-ALS exhibits some degree of heterogeneity linked to the considerable genetic diversity arising from the multitude of potential mutations sites and specific clinical prognostic factors, including cancer history. Revealing the factors that modulate the phenotypic heterogeneity of SOD1-ALS could prove advantageous in improving the efficacy of upcoming therapeutic approaches.

Sections du résumé

BACKGROUND BACKGROUND
Uncovering distinct features and trajectories of amyotrophic lateral sclerosis (ALS) associated with SOD1 mutations (SOD1-ALS) can provide valuable insights for patient' counseling and stratification for trials, and interventions timing. Our study aims to pinpoint distinct clinical characteristics of SOD1-ALS by delving into genotype-phenotype correlations and factors that potentially impact disease progression.
METHODS METHODS
This is a retrospective observational study of a SOD1-ALS cohort from two Italian registers situated in the regions of Emilia-Romagna, Piedmont and Valle d'Aosta.
RESULTS RESULTS
Out of 2204 genotyped ALS patients, 2.5% carried SOD1 mutations, with a M:F ratio of 0.83. SOD1-ALS patients were younger, and more frequently reported a family history of ALS and/or FTD. SOD1-ALS had a longer survival compared to patients without ALS-associated gene mutations. However, here was considerable variability in survival across distinct SOD1 mutations, with an average survival of less than a year for the L39V, G42S, G73S, D91N mutations. Among SOD1-ALS, multivariate analysis showed that, alongside established clinical prognostic factors such as advanced age at onset and high progression rate at diagnosis, mutations located in exon 2 or within highly conserved gene positions predicted worse survival. Conversely, among comorbidities, cancer history was independently associated with longer survival.
INTERPRETATION CONCLUSIONS
Within the context of an overall slower disease, SOD1-ALS exhibits some degree of heterogeneity linked to the considerable genetic diversity arising from the multitude of potential mutations sites and specific clinical prognostic factors, including cancer history. Revealing the factors that modulate the phenotypic heterogeneity of SOD1-ALS could prove advantageous in improving the efficacy of upcoming therapeutic approaches.

Identifiants

pubmed: 37668704
doi: 10.1007/s00415-023-11963-0
pii: 10.1007/s00415-023-11963-0
doi:

Substances chimiques

Superoxide Dismutase-1 EC 1.15.1.1
Superoxide Dismutase EC 1.15.1.1
SOD1 protein, human 0

Types de publication

Observational Study Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

6081-6092

Subventions

Organisme : Ministero della Salute
ID : RF-2016-02362405
Organisme : Seventh Framework Programme
ID : 259867
Organisme : Ministero dell'Istruzione, dell'Università e della Ricerca
ID : 2017SNW5MB
Organisme : Ministero dell'Istruzione, dell'Università e della Ricerca
ID : 101017598

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany.

Références

Zou ZY, Zhou ZR, Che CH, Liu CY, He RL, Huang HP (2017) Genetic epidemiology of amyotrophic lateral sclerosis: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 88(7):540–549. https://doi.org/10.1136/jnnp-2016-315018
doi: 10.1136/jnnp-2016-315018 pubmed: 28057713
https://alsod.ac.uk/ . Accessed 1 Dec 2022
Li HF, Wu ZY (2016) Genotype-phenotype correlations of amyotrophic lateral sclerosis. Transl Neurodegener 5:3. https://doi.org/10.1186/s40035-016-0050-8
doi: 10.1186/s40035-016-0050-8 pubmed: 26843957 pmcid: 4738789
Martinelli I, Zucchi E, Simonini C et al (2023) The landscape of cognitive impairment in superoxide dismutase 1-amyotrophic lateral sclerosis. Neural Regen Res 18(7):1427–1433. https://doi.org/10.4103/1673-5374.361535
doi: 10.4103/1673-5374.361535 pubmed: 36571338
Opie-Martin S, Iacoangeli A, Topp SD, Abel O et al (2022) The SOD1-mediated ALS phenotype shows a decoupling between age of symptom onset and disease duration. Nat Commun 13(1):6901
doi: 10.1038/s41467-022-34620-y pubmed: 36371497 pmcid: 9653399
Chiò A, Mazzini L, D’Alfonso S et al (2018) The multistep hypothesis of ALS revisited: the role of genetic mutations. Neurology 91(7):e635–e642. https://doi.org/10.1212/WNL.0000000000005996
doi: 10.1212/WNL.0000000000005996 pubmed: 30045958 pmcid: 6105040
Tang L, Ma Y, Liu XL, Chen L, Fan DS (2019) Correction to: Better survival in female SOD1-mutant patients with ALS: a study of SOD1-related natural history. Transl Neurodegener. 8:10. https://doi.org/10.1186/s40035-019-0150-3
doi: 10.1186/s40035-019-0150-3 pubmed: 30923611 pmcid: 6423817
Pfohl SR, Halicek MT, Mitchell CS (2015) Characterization of the contribution of genetic background and gender to disease progression in the SOD1 G93A mouse model of amyotrophic lateral sclerosis: a meta-analysis. J Neuromuscul Dis 2(2):137–150. https://doi.org/10.3233/JND-140068
doi: 10.3233/JND-140068 pubmed: 26594635 pmcid: 4652798
Vázquez-Costa JF, Borrego-Hernández D, Paradas C et al (2022) Characterizing SOD1 mutations in Spain. The impact of genotype, age, and sex in the natural history of the disease. Eur J Neurol. https://doi.org/10.1111/ene.15661
doi: 10.1111/ene.15661 pubmed: 36484631 pmcid: 9826246
Berdyński M, Miszta P, Safranow K et al (2022) SOD1 mutations associated with amyotrophic lateral sclerosis analysis of variant severity. Sci Rep 12(1):103. https://doi.org/10.1038/s41598-021-03891-8
doi: 10.1038/s41598-021-03891-8 pubmed: 34996976 pmcid: 8742055
Miller T, Cudkowicz M, Shaw PJ et al (2020) Phase 1–2 trial of antisense oligonucleotide Tofersen for SOD1 ALS. N Engl J Med 383(2):109–119. https://doi.org/10.1056/NEJMoa2003715
doi: 10.1056/NEJMoa2003715 pubmed: 32640130
Miller TM, Cudkowicz ME, Genge A et al (2022) Trial of antisense oligonucleotide Tofersen for SOD1 ALS. N Engl J Med 387(12):1099–1110. https://doi.org/10.1056/NEJMoa2204705
doi: 10.1056/NEJMoa2204705 pubmed: 36129998
Mandrioli J, Biguzzi S, Guidi C et al (2014) Epidemiology of amyotrophic lateral sclerosis in Emilia Romagna Region (Italy): a population based study [published correction appears in Amyotroph Lateral Scler Frontotemporal Degener. 2015 Mar;16(1-2):141]. Amyotroph Lateral Scler Frontotemp Degener 15(3–4):262–268. https://doi.org/10.3109/21678421.2013.865752
doi: 10.3109/21678421.2013.865752
Grassano M, Calvo A, Moglia C et al (2021) Mutational analysis of known ALS genes in an Italian population-based cohort. Neurology 96(4):e600–e609. https://doi.org/10.1212/WNL.0000000000011209
doi: 10.1212/WNL.0000000000011209 pubmed: 33208543 pmcid: 7905787
Calvo A, Moglia C, Lunetta C et al (2017) Factors predicting survival in ALS: a multicenter Italian study. J Neurol 264(1):54–63. https://doi.org/10.1007/s00415-016-8313-y
doi: 10.1007/s00415-016-8313-y pubmed: 27778156
Schito P, Ceccardi G, Calvo A et al (2020) Clinical features and outcomes of the flail arm and flail leg and pure lower motor neuron MND variants: a multicentre Italian study. J Neurol Neurosurg Psychiatry 91(9):1001–1003. https://doi.org/10.1136/jnnp-2020-323542
doi: 10.1136/jnnp-2020-323542 pubmed: 32651246
Kimura F, Fujimura C, Ishida S et al (2006) Progression rate of ALSFRS-R at time of diagnosis predicts survival time in ALS. Neurology 66(2):265–267. https://doi.org/10.1212/01.wnl.0000194316.91908.8a
doi: 10.1212/01.wnl.0000194316.91908.8a pubmed: 16434671
Mandrioli J, Zucchi E, Martinelli I et al (2023) Factors predicting disease progression in C9ORF72 ALS patients. J Neurol 270(2):877–890. https://doi.org/10.1007/s00415-022-11426-y
doi: 10.1007/s00415-022-11426-y pubmed: 36280624
Strong MJ, Abrahams S, Goldstein LH et al (2017) Amyotrophic lateral sclerosis—frontotemporal spectrum disorder (ALS-FTSD): revised diagnostic criteria. Amyotroph Lateral Scler Frontotemp Degener 18(3–4):153–174. https://doi.org/10.1080/21678421.2016.1267768
doi: 10.1080/21678421.2016.1267768
Mandrioli J, Ferri L, Fasano A et al (2018) Cardiovascular diseases may play a negative role in the prognosis of amyotrophic lateral sclerosis. Eur J Neurol 25(6):861–868. https://doi.org/10.1111/ene.13620
doi: 10.1111/ene.13620 pubmed: 29512869
Chiò A, Calvo A, Mazzini L et al (2012) Extensive genetics of ALS: a population-based study in Italy. Neurology 79(19):1983–1989. https://doi.org/10.1212/WNL.0b013e3182735d36
doi: 10.1212/WNL.0b013e3182735d36 pubmed: 23100398 pmcid: 3484987
Ashkenazy H, Abadi S, Martz E et al (2016) ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res 44(W1):W344–W350. https://doi.org/10.1093/nar/gkw408
doi: 10.1093/nar/gkw408 pubmed: 27166375 pmcid: 4987940
Bendl J, Stourac J, Salanda O et al (2014) PredictSNP: robust and accurate consensus classifier for prediction of disease-related mutations. PLoS Comput Biol 10(1):e1003440. https://doi.org/10.1371/journal.pcbi.1003440
doi: 10.1371/journal.pcbi.1003440 pubmed: 24453961 pmcid: 3894168
Conchillo-Solé O, de Groot NS, Avilés FX, Vendrell J, Daura X, Ventura S (2007) AGGRESCAN: a server for the prediction and evaluation of “hot spots” of aggregation in polypeptides. BMC Bioinform 8:65. https://doi.org/10.1186/1471-2105-8-65
doi: 10.1186/1471-2105-8-65
Müller K, Brenner D, Weydt P et al (2018) Comprehensive analysis of the mutation spectrum in 301 German ALS families. J Neurol Neurosurg Psychiatry 89(8):817–827. https://doi.org/10.1136/jnnp-2017-317611
doi: 10.1136/jnnp-2017-317611 pubmed: 29650794
Andersen PM, Al-Chalabi A (2011) Clinical genetics of amyotrophic lateral sclerosis: what do we really know? Nat Rev Neurol 7(11):603–615. https://doi.org/10.1038/nrneurol.2011.150
doi: 10.1038/nrneurol.2011.150 pubmed: 21989245
Mathis S, Goizet C, Soulages A, Vallat JM, Masson GL (2019) Genetics of amyotrophic lateral sclerosis: a review. J Neurol Sci 399:217–226. https://doi.org/10.1016/j.jns.2019.02.030
doi: 10.1016/j.jns.2019.02.030 pubmed: 30870681
Chiò A, Moglia C, Canosa A et al (2020) ALS phenotype is influenced by age, sex, and genetics: a population-based study. Neurology 94(8):e802–e810. https://doi.org/10.1212/WNL.0000000000008869
doi: 10.1212/WNL.0000000000008869 pubmed: 31907290
Cudkowicz ME, McKenna-Yasek D, Sapp PE et al (1997) Epidemiology of mutations in superoxide dismutase in amyotrophic lateral sclerosis. Ann Neurol 41(2):210–221. https://doi.org/10.1002/ana.410410212
doi: 10.1002/ana.410410212 pubmed: 9029070
Bali T, Self W, Liu J et al (2017) Defining SOD1 ALS natural history to guide therapeutic clinical trial design. J Neurol Neurosurg Psychiatry 88(2):99–105. https://doi.org/10.1136/jnnp-2016-313521
doi: 10.1136/jnnp-2016-313521 pubmed: 27261500
Yamashita S, Ando Y (2015) Genotype-phenotype relationship in hereditary amyotrophic lateral sclerosis. Transl Neurodegener 4:13. https://doi.org/10.1186/s40035-015-0036-y
doi: 10.1186/s40035-015-0036-y pubmed: 26213621 pmcid: 4513711
Wei Q, Chen X, Chen Y, Ou R, Cao B, Hou Y, Zhang L, Shang HF (2019) Unique characteristics of the genetics epidemiology of amyotrophic lateral sclerosis in China. Sci China Life Sci 62(4):517–525. https://doi.org/10.1007/s11427-018-9453-x
doi: 10.1007/s11427-018-9453-x pubmed: 30863961
Alavi A, Nafissi S, Rohani M, Zamani B, Sedighi B, Shamshiri H, Fan JB, Ronaghi M, Elahi E (2013) Genetic analysis and SOD1 mutation screening in Iranian amyotrophic lateral sclerosis patients. Neurobiol Aging 34(5):1516.e1–8. https://doi.org/10.1016/j.neurobiolaging.2012.09.006
doi: 10.1016/j.neurobiolaging.2012.09.006 pubmed: 23062701
Soong BW, Lin KP, Guo YC, Lin CC, Tsai PC, Liao YC, Lu YC, Wang SJ, Tsai CP, Lee YC (2014) Extensive molecular genetic survey of Taiwanese patients with amyotrophic lateral sclerosis. Neurobiol Aging 35(10):2423.e1–6. https://doi.org/10.1016/j.neurobiolaging.2014.05.008
doi: 10.1016/j.neurobiolaging.2014.05.008 pubmed: 24908169
Stam NC, Nithianantharajah J, Howard ML, Atkin JD, Cheema SS, Hannan AJ (2008) Sex-specific behavioural effects of environmental enrichment in a transgenic mouse model of amyotrophic lateral sclerosis. Eur J Neurosci 28(4):717–723. https://doi.org/10.1111/j.1460-9568.2008.06374.x
doi: 10.1111/j.1460-9568.2008.06374.x pubmed: 18702691
Blasco H, Guennoc AM, Veyrat-Durebex C et al (2012) Amyotrophic lateral sclerosis: a hormonal condition? Amyotroph Lateral Scler 13(6):585–588. https://doi.org/10.3109/17482968.2012.706303
doi: 10.3109/17482968.2012.706303 pubmed: 22873563
Cervetto C, Frattaroli D, Maura G, Marcoli M (2013) Motor neuron dysfunction in a mouse model of ALS: gender-dependent effect of P2X7 antagonism. Toxicology 311(1–2):69–77. https://doi.org/10.1016/j.tox.2013.04.004
doi: 10.1016/j.tox.2013.04.004 pubmed: 23583883
Vegeto E, Villa A, Della Torre S et al (2020) The role of sex and sex hormones in neurodegenerative diseases. Endocr Rev 41(2):273–319. https://doi.org/10.1210/endrev/bnz005
doi: 10.1210/endrev/bnz005 pubmed: 31544208
Vázquez-Costa JF, Borrego-Hernández D, Paradas C et al (2022) Characterizing SOD1 mutations in Spain. The impact of genotype, age, and sex in the natural history of the disease [published online ahead of print, 2022 Dec 9]. Eur J Neurol. https://doi.org/10.1111/ene.15661
doi: 10.1111/ene.15661 pubmed: 36484631 pmcid: 9826246
Tang L, Dorst J, Chen L et al (2021) A natural history comparison of SOD1-mutant patients with amyotrophic lateral sclerosis between Chinese and German populations. Transl Neurodegener 10(1):42. https://doi.org/10.1186/s40035-021-00266-x
doi: 10.1186/s40035-021-00266-x pubmed: 34711284 pmcid: 8555265
Henden L, Twine NA, Szul P et al (2020) Identity by descent analysis identifies founder events and links SOD1 familial and sporadic ALS cases. NPJ Genom Med 5:32. https://doi.org/10.1038/s41525-020-00139-8
doi: 10.1038/s41525-020-00139-8 pubmed: 32789025 pmcid: 7414871
McCann EP, Williams KL, Fifita JA et al (2017) The genotype-phenotype landscape of familial amyotrophic lateral sclerosis in Australia. Clin Genet 92(3):259–266. https://doi.org/10.1111/cge.12973
doi: 10.1111/cge.12973 pubmed: 28105640
Zu JS, Deng HX, Lo TP et al (1997) Exon 5 encoded domain is not required for the toxic function of mutant SOD1 but essential for the dismutase activity: identification and characterization of two new SOD1 mutations associated with familial amyotrophic lateral sclerosis. Neurogenetics 1(1):65–71. https://doi.org/10.1007/s100480050010
doi: 10.1007/s100480050010 pubmed: 10735277
Rakhit R, Chakrabartty A (2006) Structure, folding, and misfolding of Cu, Zn superoxide dismutase in amyotrophic lateral sclerosis. Biochim Biophys Acta 1762(11–12):1025–1037. https://doi.org/10.1016/j.bbadis.2006.05.004
doi: 10.1016/j.bbadis.2006.05.004 pubmed: 16814528
Xu J, Su X, Burley SK, Zheng XFS (2022) Nuclear SOD1 in growth control, oxidative stress response, amyotrophic lateral sclerosis, and cancer. Antioxidants (Basel) 11(2):427
doi: 10.3390/antiox11020427 pubmed: 35204309
Andersen PM, Sims KB, Xin WW et al (2003) Sixteen novel mutations in the Cu/Zn superoxide dismutase gene in amyotrophic lateral sclerosis: a decade of discoveries, defects and disputes. Amyotroph Lateral Scler Other Motor Neuron Disord 4(2):62–73. https://doi.org/10.1080/14660820310011700
doi: 10.1080/14660820310011700 pubmed: 14506936
Zinman L, Liu HN, Sato C et al (2009) A mechanism for low penetrance in an ALS family with a novel SOD1 deletion. Neurology 72(13):1153–1159. https://doi.org/10.1212/01.wnl.0000345363.65799.35
doi: 10.1212/01.wnl.0000345363.65799.35 pubmed: 19332692 pmcid: 2680064
Van Daele SH, Moisse M, van Vugt JJFA et al (2023) Genetic variability in sporadic amyotrophic lateral sclerosis [published online ahead of print, 2023 Apr 12]. Brain. https://doi.org/10.1093/brain/awad120
doi: 10.1093/brain/awad120 pubmed: 37043475 pmcid: 10473563
Benatar M, Wuu J, Andersen PM et al (2022) Design of a randomized, placebo-controlled, phase 3 trial of Tofersen initiated in clinically presymptomatic SOD1 variant carriers: the ATLAS study. Neurotherapeutics 19(4):1248–1258. https://doi.org/10.1007/s13311-022-01237-4
doi: 10.1007/s13311-022-01237-4 pubmed: 35585374 pmcid: 9587202

Auteurs

Ilaria Martinelli (I)

Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Viale Pietro Giardini, 1355, 41126, Modena, Italy.
Clinical and Experimental Medicine Ph.D. Program, University of Modena and Reggio Emilia, Modena, Italy.

Andrea Ghezzi (A)

Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.

Elisabetta Zucchi (E)

Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Viale Pietro Giardini, 1355, 41126, Modena, Italy. elibettizucchi@gmail.com.
Neuroscience PhD Program, University of Modena and Reggio Emilia, Modena, Italy. elibettizucchi@gmail.com.

Giulia Gianferrari (G)

Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Viale Pietro Giardini, 1355, 41126, Modena, Italy.
Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.

Laura Ferri (L)

Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Viale Pietro Giardini, 1355, 41126, Modena, Italy.
Neuroscience PhD Program, University of Modena and Reggio Emilia, Modena, Italy.

Cristina Moglia (C)

Department of Neuroscience "Rita Levi Montalcini", ALS Centre, University of Torino, Turin, Italy.

Umberto Manera (U)

Department of Neuroscience "Rita Levi Montalcini", ALS Centre, University of Torino, Turin, Italy.

Luca Solero (L)

Department of Neuroscience "Rita Levi Montalcini", ALS Centre, University of Torino, Turin, Italy.

Rosario Vasta (R)

Department of Neuroscience "Rita Levi Montalcini", ALS Centre, University of Torino, Turin, Italy.

Antonio Canosa (A)

Department of Neuroscience "Rita Levi Montalcini", ALS Centre, University of Torino, Turin, Italy.
SC Neurologia 1U, AOU Città della Salute e della Scienza of Torino, Turin, Italy.

Maurizio Grassano (M)

Department of Neuroscience "Rita Levi Montalcini", ALS Centre, University of Torino, Turin, Italy.
SC Neurologia 1U, AOU Città della Salute e della Scienza of Torino, Turin, Italy.

Maura Brunetti (M)

SC Neurologia 1U, AOU Città della Salute e della Scienza of Torino, Turin, Italy.

Letizia Mazzini (L)

Neurology Unit, ALS Center, AOU Maggiore della Carità and University of Piemonte Orientale, Novara, Italy.

Fabiola De Marchi (F)

Neurology Unit, ALS Center, AOU Maggiore della Carità and University of Piemonte Orientale, Novara, Italy.

Cecilia Simonini (C)

Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Viale Pietro Giardini, 1355, 41126, Modena, Italy.

Nicola Fini (N)

Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Viale Pietro Giardini, 1355, 41126, Modena, Italy.

Marco Vinceti (M)

Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.
Department of Science of Public Health, Research Centre in Environmental, Genetic and Nutritional Epidemiology, University of Modena and Reggio Emilia, Modena, Italy.
Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.

Marcello Pinti (M)

Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.

Adriano Chiò (A)

Department of Neuroscience "Rita Levi Montalcini", ALS Centre, University of Torino, Turin, Italy.
SC Neurologia 1U, AOU Città della Salute e della Scienza of Torino, Turin, Italy.

Andrea Calvo (A)

Department of Neuroscience "Rita Levi Montalcini", ALS Centre, University of Torino, Turin, Italy.
SC Neurologia 1U, AOU Città della Salute e della Scienza of Torino, Turin, Italy.

Jessica Mandrioli (J)

Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Viale Pietro Giardini, 1355, 41126, Modena, Italy.
Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH