Generation of Conditional Knockout Zebrafish Using an Invertible Gene-Trap Cassette.


Journal

Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969

Informations de publication

Date de publication:
2024
Historique:
medline: 6 9 2023
pubmed: 5 9 2023
entrez: 5 9 2023
Statut: ppublish

Résumé

Conditional knockout (cKO) is a genetic technique to inactivate gene expression in specific tissues or cell types in a temporally regulated manner. cKO analysis is essential to investigate gene function while avoiding the confounding effects of global gene deletion. Genetic techniques enabling cKO analysis were developed in mice based on culturable embryonic stem cells that were not generally available in zebrafish, which hampered precise analysis of genetic mechanisms of organ development and regeneration. However, recent advances in genome editing technologies have resolved this limitation, providing a platform for the generation of cKO models in any organism. Here we describe a detailed protocol for the generation of cKO zebrafish using a Cre-dependent genetic switch.

Identifiants

pubmed: 37668914
doi: 10.1007/978-1-0716-3401-1_13
doi:

Substances chimiques

CD40 Ligand 147205-72-9

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

205-214

Informations de copyright

© 2024. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Lobe CG, Nagy A (1998) Conditional genome alteration in mice. BioEssays 20(3):200–208
doi: 10.1002/(SICI)1521-1878(199803)20:3<200::AID-BIES3>3.0.CO;2-V pubmed: 9631647
Rajewsky K et al (1996) Conditional gene targeting. J Clin Invest 98(3):600–603
doi: 10.1172/JCI118828 pubmed: 8698848 pmcid: 507466
Rossant J, McMahon A (1999) “Cre”-ating mouse mutants-a meeting review on conditional mouse genetics. Genes Dev 13(2):142–145
doi: 10.1101/gad.13.2.142 pubmed: 9925637
Koller BH, Smithies O (1992) Altering genes in animals by gene targeting. Annu Rev Immunol 10:705–730
doi: 10.1146/annurev.iy.10.040192.003421 pubmed: 1591000
Thomas KR, Capecchi MR (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51(3):503–512
doi: 10.1016/0092-8674(87)90646-5 pubmed: 2822260
Schnütgen F et al (2003) A directional strategy for monitoring Cre-mediated recombination at the cellular level in the mouse. Nat Biotechnol 21(5):562–565
doi: 10.1038/nbt811 pubmed: 12665802
Hoshijima K, Jurynec MJ, Grunwald DJ (2016) Precise editing of the zebrafish genome made simple and efficient. Dev Cell 36(6):654–667
doi: 10.1016/j.devcel.2016.02.015 pubmed: 27003937 pmcid: 4806538
Bedell VM et al (2012) In vivo genome editing using a high-efficiency TALEN system. Nature 491(7422):114–118
doi: 10.1038/nature11537 pubmed: 23000899 pmcid: 3491146
Zu Y et al (2013) TALEN-mediated precise genome modification by homologous recombination in zebrafish. Nat Methods 10(4):329–331
doi: 10.1038/nmeth.2374 pubmed: 23435258
Li W et al (2019) One-step efficient generation of dual-function conditional knockout and geno-tagging alleles in zebrafish. elife 8:e48081
doi: 10.7554/eLife.48081 pubmed: 31663848 pmcid: 6845224
Burg L et al (2018) Conditional mutagenesis by oligonucleotide-mediated integration of loxP sites in zebrafish. PLoS Genet 14(11):e1007754
doi: 10.1371/journal.pgen.1007754 pubmed: 30427827 pmcid: 6261631
Sugimoto K et al (2017) Dissection of zebrafish shha function using site-specific targeting with a Cre-dependent genetic switch. elife 6
Ogawa M et al (2021) Krüppel-like factor 1 is a core cardiomyogenic trigger in zebrafish. Science 372(6538):201–205
doi: 10.1126/science.abe2762 pubmed: 33833125
Ma AC et al (2013) High efficiency in vivo genome engineering with a simplified 15-RVD GoldyTALEN design. PLoS One 8(5):e65259
doi: 10.1371/journal.pone.0065259 pubmed: 23734242 pmcid: 3667041
Ota S et al (2013) Efficient identification of TALEN-mediated genome modifications using heteroduplex mobility assays. Genes Cells 18(6):450–458
doi: 10.1111/gtc.12050 pubmed: 23573916 pmcid: 4834911
Ansai S et al (2014) Design, evaluation, and screening methods for efficient targeted mutagenesis with transcription activator-like effector nucleases in medaka. Develop Growth Differ 56(1):98–107
doi: 10.1111/dgd.12104
Ansai S, Kinoshita M (2014) Targeted mutagenesis using CRISPR/Cas system in medaka. Biol Open 3(5):362–371
doi: 10.1242/bio.20148177 pubmed: 24728957 pmcid: 4021358
Kikuchi K et al (2010) Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature 464(7288):601–605
doi: 10.1038/nature08804 pubmed: 20336144 pmcid: 3040215
Kikuchi K et al (2011) tcf21+ epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration. Development 138(14):2895–2902
doi: 10.1242/dev.067041 pubmed: 21653610 pmcid: 3119303
Poss KD, Wilson LG, Keating MT (2002) Heart regeneration in zebrafish. Science 298(5601):2188–2190
doi: 10.1126/science.1077857 pubmed: 12481136
Sogabe Y (2020) Detection of multi-base mutation by genome editing using MultiNA (Application News No. B110). Retrieved from Shimadzu website: https://www.shimadzu.com/an/sites/shimadzu.com.an/files/pim/pim_document_file/applications/application_note/13139/jpu220002.pdf . Shimadzu

Auteurs

Masahito Ogawa (M)

Department of Cardiac Regeneration Biology , National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan.

Kazu Kikuchi (K)

Department of Cardiac Regeneration Biology , National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan. kikuchi@ncvc.go.jp.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH