Generation of Conditional Knockout Zebrafish Using an Invertible Gene-Trap Cassette.
Cardiomyocytes
Conditional knockout
Gene trap
Heart regeneration
Zebrafish
Journal
Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969
Informations de publication
Date de publication:
2024
2024
Historique:
medline:
6
9
2023
pubmed:
5
9
2023
entrez:
5
9
2023
Statut:
ppublish
Résumé
Conditional knockout (cKO) is a genetic technique to inactivate gene expression in specific tissues or cell types in a temporally regulated manner. cKO analysis is essential to investigate gene function while avoiding the confounding effects of global gene deletion. Genetic techniques enabling cKO analysis were developed in mice based on culturable embryonic stem cells that were not generally available in zebrafish, which hampered precise analysis of genetic mechanisms of organ development and regeneration. However, recent advances in genome editing technologies have resolved this limitation, providing a platform for the generation of cKO models in any organism. Here we describe a detailed protocol for the generation of cKO zebrafish using a Cre-dependent genetic switch.
Identifiants
pubmed: 37668914
doi: 10.1007/978-1-0716-3401-1_13
doi:
Substances chimiques
CD40 Ligand
147205-72-9
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
205-214Informations de copyright
© 2024. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Lobe CG, Nagy A (1998) Conditional genome alteration in mice. BioEssays 20(3):200–208
doi: 10.1002/(SICI)1521-1878(199803)20:3<200::AID-BIES3>3.0.CO;2-V
pubmed: 9631647
Rajewsky K et al (1996) Conditional gene targeting. J Clin Invest 98(3):600–603
doi: 10.1172/JCI118828
pubmed: 8698848
pmcid: 507466
Rossant J, McMahon A (1999) “Cre”-ating mouse mutants-a meeting review on conditional mouse genetics. Genes Dev 13(2):142–145
doi: 10.1101/gad.13.2.142
pubmed: 9925637
Koller BH, Smithies O (1992) Altering genes in animals by gene targeting. Annu Rev Immunol 10:705–730
doi: 10.1146/annurev.iy.10.040192.003421
pubmed: 1591000
Thomas KR, Capecchi MR (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51(3):503–512
doi: 10.1016/0092-8674(87)90646-5
pubmed: 2822260
Schnütgen F et al (2003) A directional strategy for monitoring Cre-mediated recombination at the cellular level in the mouse. Nat Biotechnol 21(5):562–565
doi: 10.1038/nbt811
pubmed: 12665802
Hoshijima K, Jurynec MJ, Grunwald DJ (2016) Precise editing of the zebrafish genome made simple and efficient. Dev Cell 36(6):654–667
doi: 10.1016/j.devcel.2016.02.015
pubmed: 27003937
pmcid: 4806538
Bedell VM et al (2012) In vivo genome editing using a high-efficiency TALEN system. Nature 491(7422):114–118
doi: 10.1038/nature11537
pubmed: 23000899
pmcid: 3491146
Zu Y et al (2013) TALEN-mediated precise genome modification by homologous recombination in zebrafish. Nat Methods 10(4):329–331
doi: 10.1038/nmeth.2374
pubmed: 23435258
Li W et al (2019) One-step efficient generation of dual-function conditional knockout and geno-tagging alleles in zebrafish. elife 8:e48081
doi: 10.7554/eLife.48081
pubmed: 31663848
pmcid: 6845224
Burg L et al (2018) Conditional mutagenesis by oligonucleotide-mediated integration of loxP sites in zebrafish. PLoS Genet 14(11):e1007754
doi: 10.1371/journal.pgen.1007754
pubmed: 30427827
pmcid: 6261631
Sugimoto K et al (2017) Dissection of zebrafish shha function using site-specific targeting with a Cre-dependent genetic switch. elife 6
Ogawa M et al (2021) Krüppel-like factor 1 is a core cardiomyogenic trigger in zebrafish. Science 372(6538):201–205
doi: 10.1126/science.abe2762
pubmed: 33833125
Ma AC et al (2013) High efficiency in vivo genome engineering with a simplified 15-RVD GoldyTALEN design. PLoS One 8(5):e65259
doi: 10.1371/journal.pone.0065259
pubmed: 23734242
pmcid: 3667041
Ota S et al (2013) Efficient identification of TALEN-mediated genome modifications using heteroduplex mobility assays. Genes Cells 18(6):450–458
doi: 10.1111/gtc.12050
pubmed: 23573916
pmcid: 4834911
Ansai S et al (2014) Design, evaluation, and screening methods for efficient targeted mutagenesis with transcription activator-like effector nucleases in medaka. Develop Growth Differ 56(1):98–107
doi: 10.1111/dgd.12104
Ansai S, Kinoshita M (2014) Targeted mutagenesis using CRISPR/Cas system in medaka. Biol Open 3(5):362–371
doi: 10.1242/bio.20148177
pubmed: 24728957
pmcid: 4021358
Kikuchi K et al (2010) Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature 464(7288):601–605
doi: 10.1038/nature08804
pubmed: 20336144
pmcid: 3040215
Kikuchi K et al (2011) tcf21+ epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration. Development 138(14):2895–2902
doi: 10.1242/dev.067041
pubmed: 21653610
pmcid: 3119303
Poss KD, Wilson LG, Keating MT (2002) Heart regeneration in zebrafish. Science 298(5601):2188–2190
doi: 10.1126/science.1077857
pubmed: 12481136
Sogabe Y (2020) Detection of multi-base mutation by genome editing using MultiNA (Application News No. B110). Retrieved from Shimadzu website: https://www.shimadzu.com/an/sites/shimadzu.com.an/files/pim/pim_document_file/applications/application_note/13139/jpu220002.pdf . Shimadzu