Bibliometric analysis of global literature productivity in systemic lupus erythematosus from 2013 to 2022.
Altmetric analysis
Bibliometric analysis
CiteSpace
Systemic lupus erythematosus
VOSviewer
Journal
Clinical rheumatology
ISSN: 1434-9949
Titre abrégé: Clin Rheumatol
Pays: Germany
ID NLM: 8211469
Informations de publication
Date de publication:
05 Sep 2023
05 Sep 2023
Historique:
received:
05
05
2023
accepted:
30
07
2023
revised:
12
07
2023
medline:
5
9
2023
pubmed:
5
9
2023
entrez:
5
9
2023
Statut:
aheadofprint
Résumé
Bibliometric analysis is a mature method for quantitative evaluation of academic productivity. In view of the rapid development of research in the field of systemic lupus erythematosus (SLE) in the past decade, we used bibliometric methods to comprehensively analyze the literature in the field of SLE from 2013 to 2022. The relevant literature in the field of SLE from 2013 to 2022 was screened in the Web of Science Core Collection database. After obtaining and sorting out the data, CiteSpace and VOSviewer software were used to visualize the relevant data, and SPSS software was used for scientific statistics. A total of 18,450 publications were included in this study. The number of articles published over the past 10 years has generally shown an upward trend, while Altmetric attention scores have also shown a clear upward trend in general and in most countries. Citation analysis and Altmetric analysis can mutually prove and supplement the influence of papers. The USA, China, Japan, Italy, and the UK are the most productive countries, but China and Japan are significantly inferior to other countries in terms of research influence. Four of the top ten authors are at the center of the collaboration network. LUPUS is the most contributing journal. The theme of systemic lupus erythematosus research mainly focuses on the pathogenesis, treatment, and management of SLE, and the emerging trend is related research on machine learning and immune cells. This study shows the research status of SLE, clarifies the main contributors in this field, discusses and analyzes the research hotspots and trends in this field, and provides reference for further research in this field to promote the development of SLE research. Key Points • Through bibliometric analysis, Altmetric analysis, and visual analysis, we reveal the global productivity characteristics of SLE-related papers in the past 10 years. • The number of global SLE-related studies has shown a significant increase, indicating that SLE is still a hot topic and deserves further study. • Citation analysis and Altmetric analysis can mutually prove and supplement the influence of papers, and the attention of related literature among non-professional researchers is increasing. • The theme of SLE research mainly focuses on the pathogenesis, treatment, and management of SLE. The emerging trend is machine learning and immune cells, which may provide new strategies for the diagnosis and treatment of SLE in the future.
Sections du résumé
BACKGROUND
BACKGROUND
Bibliometric analysis is a mature method for quantitative evaluation of academic productivity. In view of the rapid development of research in the field of systemic lupus erythematosus (SLE) in the past decade, we used bibliometric methods to comprehensively analyze the literature in the field of SLE from 2013 to 2022.
METHODS
METHODS
The relevant literature in the field of SLE from 2013 to 2022 was screened in the Web of Science Core Collection database. After obtaining and sorting out the data, CiteSpace and VOSviewer software were used to visualize the relevant data, and SPSS software was used for scientific statistics.
RESULTS
RESULTS
A total of 18,450 publications were included in this study. The number of articles published over the past 10 years has generally shown an upward trend, while Altmetric attention scores have also shown a clear upward trend in general and in most countries. Citation analysis and Altmetric analysis can mutually prove and supplement the influence of papers. The USA, China, Japan, Italy, and the UK are the most productive countries, but China and Japan are significantly inferior to other countries in terms of research influence. Four of the top ten authors are at the center of the collaboration network. LUPUS is the most contributing journal. The theme of systemic lupus erythematosus research mainly focuses on the pathogenesis, treatment, and management of SLE, and the emerging trend is related research on machine learning and immune cells.
CONCLUSION
CONCLUSIONS
This study shows the research status of SLE, clarifies the main contributors in this field, discusses and analyzes the research hotspots and trends in this field, and provides reference for further research in this field to promote the development of SLE research. Key Points • Through bibliometric analysis, Altmetric analysis, and visual analysis, we reveal the global productivity characteristics of SLE-related papers in the past 10 years. • The number of global SLE-related studies has shown a significant increase, indicating that SLE is still a hot topic and deserves further study. • Citation analysis and Altmetric analysis can mutually prove and supplement the influence of papers, and the attention of related literature among non-professional researchers is increasing. • The theme of SLE research mainly focuses on the pathogenesis, treatment, and management of SLE. The emerging trend is machine learning and immune cells, which may provide new strategies for the diagnosis and treatment of SLE in the future.
Identifiants
pubmed: 37668951
doi: 10.1007/s10067-023-06728-z
pii: 10.1007/s10067-023-06728-z
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : the Project of Youth Innovation in Medical Research in Sichuan Province
ID : Q15027
Organisme : the Project of Sichuan Education Department
ID : 18ZB0640
Organisme : the Project of Health Department in Sichuan Province
ID : 150078
Organisme : Doctoral Foundation of Affiliated Hospital of Southwest Medical University
ID : No.18048
Organisme : the Project of Technology Department in Sichuan Province
ID : 20YYJC20150
Organisme : the Project of Southwest Medical University
ID : 07092
Informations de copyright
© 2023. The Author(s), under exclusive licence to International League of Associations for Rheumatology (ILAR).
Références
Barber MRW, Drenkard C, Falasinnu T et al (2021) Global epidemiology of systemic lupus erythematosus. Nat Rev Rheumatol 17(9):515–532. https://doi.org/10.1038/s41584-021-00668-1
doi: 10.1038/s41584-021-00668-1
pubmed: 34345022
pmcid: 8982275
Karrar S, Graham DSC (2018) Abnormal B cell development in systemic lupus erythematosus: what the genetics tell us. Arthritis Rheumatol 70(4):496–507. https://doi.org/10.1002/art.40396
doi: 10.1002/art.40396
pubmed: 29207444
pmcid: 5900717
Ameer MA, Chaudhry H, Mushtaq J et al (2022) An overview of systemic lupus erythematosus (SLE) pathogenesis, classification, and management. Cureus J Med Sci 14(10). https://doi.org/10.7759/cureus.30330
Fanouriakis A, Kostopoulou M, Alunno A et al (2019) 2019 update of the EULAR recommendations for the management of systemic lupus erythematosus. Ann Rheum Dis 78(6):736–745. https://doi.org/10.1136/annrheumdis-2019-215089
doi: 10.1136/annrheumdis-2019-215089
pubmed: 30926722
Doria A, Gatto M, Zen M, Iaccarino L, Punzi L (2014) Optimizing outcome in SLE: treating-to-target and definition of treatment goals. Autoimmun Rev 13(7):770–777. https://doi.org/10.1016/j.autrev.2014.01.055
doi: 10.1016/j.autrev.2014.01.055
pubmed: 24480071
Rahman A, Isenberg DA (2008) Mechanisms of disease: systemic lupus erythematosus. N Engl J Med 358(9):929–939. https://doi.org/10.1056/NEJMra071297
doi: 10.1056/NEJMra071297
pubmed: 18305268
Nune A, Barman B, Sapkota HR et al (2022) Nanotechnology applications in rheumatology. Rheumatol Int 42(11):1883–1891. https://doi.org/10.1007/s00296-022-05141-0
doi: 10.1007/s00296-022-05141-0
pubmed: 35587833
Diem A, Wolter SC (2013) The use of bibliometrics to measure research performance in education sciences. Res High Educ 54(1):86–114. https://doi.org/10.1007/s11162-012-9264-5
doi: 10.1007/s11162-012-9264-5
Mou J, Cui Y, Kurcz K (2019) Bibliometric and visualized analysis of research on major e-commerce journals using CiteSpace. J Electron Commer Res 20(4):219–237
Donthu N, Kumar S, Mukherjee D, Pandey N, Lim WM (2021) How to conduct a bibliometric analysis: an overview and guidelines. J Bus Res 133:285–296. https://doi.org/10.1016/j.jbusres.2021.04.070
doi: 10.1016/j.jbusres.2021.04.070
Trueger NS, Thoma B, Hsu CH, Sullivan D, Peters L, Lin M (2015) The Altmetric score: a new measure for article-level dissemination and impact. Ann Emerg Med 66(5):549–553. https://doi.org/10.1016/j.annemergmed.2015.04.022
doi: 10.1016/j.annemergmed.2015.04.022
pubmed: 26004769
Zimba O, Gasparyan AY (2021) Social media platforms: a primer for researchers. Reumatologia 59(2):68–72. https://doi.org/10.5114/reum.2021.102707
doi: 10.5114/reum.2021.102707
pubmed: 33976459
pmcid: 8103414
Li MX, Yin F, He YX et al (2023) Bibliometric and altmetric analyses of publication activity in the field of idiopathic inflammatory myopathy in 2011–2021 based on web of science core collection databases. Rheumatol Int 43(6):1121–1133. https://doi.org/10.1007/s00296-022-05211-3
doi: 10.1007/s00296-022-05211-3
pubmed: 36167928
Warren VT, Patel B, Boyd CJ (2020) Determining the relationship between Altmetric score and literature citations in the oral and maxillofacial surgery literature. J Oral Maxillofac Surg 78(9). https://doi.org/10.1016/j.joms.2020.03.043
Zhang X, Yang QY, Yu H et al (2022) Bibliometric analysis of the global literature productivity of adult-onset Still’s disease (2011–2020). Rheumatol Int 42(4):707–716. https://doi.org/10.1007/s00296-022-05097-1
doi: 10.1007/s00296-022-05097-1
pubmed: 35099609
Li BZ, Pan HF, Ye DQ (2013) A bibliometric study of literature on SLE research in PubMed (2002–2011). Lupus 22(8):772–777. https://doi.org/10.1177/0961203313491850
doi: 10.1177/0961203313491850
pubmed: 23753297
Koo M (2021) Systemic lupus erythematosus research: a bibliometric analysis over a 50-year period. Int J Environ Res Public Health 18(13). https://doi.org/10.3390/ijerph18137095
Chen CM (2017) Science mapping: a systematic review of the literature. J Data Inf Sci 2(2):1–40. https://doi.org/10.1515/jdis-2017-0006
doi: 10.1515/jdis-2017-0006
Gao Y, Ge L, Shi SZ et al (2019) Global trends and future prospects of e-waste research: a bibliometric analysis. Environ Sci Pollut Res 26(17):17809–17820. https://doi.org/10.1007/s11356-019-05071-8
doi: 10.1007/s11356-019-05071-8
Gao Y, Shi SZ, Ma WJ et al (2019) Bibliometric analysis of global research on PD-1 and PD-L1 in the field of cancer. Int Immunopharmacol 72:374–384. https://doi.org/10.1016/j.intimp.2019.03.045
doi: 10.1016/j.intimp.2019.03.045
pubmed: 31030093
Zhao X, Chen JW, Pan YY, Feng H, Meng BK, Meng Y (2019) A bibliometric analysis of the global research in ankylosing spondyloarthritis (2008–2017). Rheumatol Int 39(6):1091–1097. https://doi.org/10.1007/s00296-019-04308-6
doi: 10.1007/s00296-019-04308-6
pubmed: 31025140
Zou LX, Sun L (2019) Global diabetic kidney disease research from 2000 to 2017: a bibliometric analysis. Medicine 98(6). https://doi.org/10.1097/md.0000000000014394
Akyol A, Kocyigit BF (2021) Publication activity in the field of Sjogren’s syndrome: a ten-year web of science based analysis. Rheumatol Int 41(4):763–769. https://doi.org/10.1007/s00296-020-04714-1
doi: 10.1007/s00296-020-04714-1
pubmed: 33030565
Liao HC, Tang M, Luo L, Li CY, Chiclana F, Zeng XJ (2018) A bibliometric analysis and visualization of medical big data research. Sustainability 10(1). https://doi.org/10.3390/su10010166
Chen CM, Dubin R, Kim MC (2014) Orphan drugs and rare diseases: a scientometric review (2000–2014). Expert Opin Orphan Drugs 2(7):709–24. https://doi.org/10.1517/21678707.2014.920251
doi: 10.1517/21678707.2014.920251
Wang SQ, Gao YQ, Zhang C, Xie YJ, Wang JX, Xu FY (2020) A bibliometric analysis using CiteSpace of publications from 1999 to 2018 on patient rehabilitation after total knee arthroplasty. Med Sci Monit 26. https://doi.org/10.12659/msm.920795
Robinson DBT, Powell A, Waterman J et al (2021) Predictive value of Altmetric score on citation rates and bibliometric impact. Bjs Open 5(1). https://doi.org/10.1093/bjsopen/zraa039
Kocyigit BF, Akyol A (2021) Bibliometric and Altmetric analyses of publication activity in the field of Behcet’s disease in 2010–2019. J Korean Med Sci 36(32). https://doi.org/10.3346/jkms.2021.36.e207
Suzan V, Unal D (2021) Comparison of attention for malnutrition research on social media versus academia: Altmetric score analysis. Nutrition 82. https://doi.org/10.1016/j.nut.2020.111060
Martynov I, Klima-Frysch J, Schoenberger J (2020) A scientometric analysis of neuroblastoma research. Bmc Cancer 20(1). https://doi.org/10.1186/s12885-020-06974-3
Zhang K, Zhao JL, Chu LH et al (2017) China’s growing contribution to sepsis research from 1984 to 2014 a bibliometric study. Medicine 96(25). https://doi.org/10.1097/md.0000000000007275
Chiu YM, Lai CH (2010) Nationwide population-based epidemiologic study of systemic lupus erythematosus in Taiwan. Lupus 19(10):1250–1255. https://doi.org/10.1177/0961203310373780
doi: 10.1177/0961203310373780
pubmed: 20647248
Gergianaki I, Fanouriakis A, Repa A et al (2017) Epidemiology and burden of systemic lupus erythematosus in a Southern European population: data from the community-based lupus registry of Crete, Greece. Ann Rheum Dis 76(12):1992–2000. https://doi.org/10.1136/annrheumdis-2017-211206
doi: 10.1136/annrheumdis-2017-211206
pubmed: 28780511
Ingvarsson RF, Bengtsson AA, Jonsen A (2016) Variations in the epidemiology of systemic lupus erythematosus in southern Sweden. Lupus 25(7):772–780. https://doi.org/10.1177/0961203316635288
doi: 10.1177/0961203316635288
pubmed: 26923282
Shim JS, Sung YK, Bin Joo Y, Lee HS, Bae SC (2014) Prevalence and incidence of systemic lupus erythematosus in South Korea. Rheumatol Int 34(7):909–917. https://doi.org/10.1007/s00296-013-2915-9
doi: 10.1007/s00296-013-2915-9
pubmed: 24322455
Tian JR, Zhang DY, Yao X, Huang YQ, Lu QJ (2023) Global epidemiology of systemic lupus erythematosus: a comprehensive systematic analysis and modelling study. Ann Rheum Dis 82(3):351–356. https://doi.org/10.1136/ard-2022-223035
doi: 10.1136/ard-2022-223035
pubmed: 36241363
Carter EE, Barr SG, Clarke AE (2016) The global burden of SLE: prevalence, health disparities and socioeconomic impact. Nat Rev Rheumatol 12(10):605–620. https://doi.org/10.1038/nrrheum.2016.137
doi: 10.1038/nrrheum.2016.137
pubmed: 27558659
Bruce IN, O’Keeffe AG, Farewell V et al (2015) Factors associated with damage accrual in patients with systemic lupus erythematosus: results from the Systemic Lupus International Collaborating Clinics (SLICC) Inception Cohort. Ann Rheum Dis 74(9):1706–1713. https://doi.org/10.1136/annrheumdis-2013-205171
doi: 10.1136/annrheumdis-2013-205171
pubmed: 24834926
Hanly JG, O’Keeffe AG, Su L et al (2016) The frequency and outcome of lupus nephritis: results from an international inception cohort study. Rheumatology 55(2):252–262. https://doi.org/10.1093/rheumatology/kev311
doi: 10.1093/rheumatology/kev311
pubmed: 26342222
Ke LX, Lu CC, Shen R, Lu TT, Ma B, Hua YP (2020) Knowledge mapping of drug-induced liver injury: a scientometric investigation (2010–2019). Front Pharmacol 11. https://doi.org/10.3389/fphar.2020.00842
Fanouriakis A, Tziolos N, Bertsias G, Boumpas DT (2021) Update on the diagnosis and management of systemic lupus erythematosus. Ann Rheum Dis 80(1):14–25. https://doi.org/10.1136/annrheumdis-2020-218272
doi: 10.1136/annrheumdis-2020-218272
pubmed: 33051219
Tsokos GC (2020) Autoimmunity and organ damage in systemic lupus erythematosus. Nat Immunol 21(6):605–614. https://doi.org/10.1038/s41590-020-0677-6
doi: 10.1038/s41590-020-0677-6
pubmed: 32367037
pmcid: 8135909
Dorner T, Giesecke C, Lipsky PE (2011) Mechanisms of B cell autoimmunity in SLE. Arthritis Res Ther 13(5). https://doi.org/10.1186/ar3433
Suarez-Fueyo A, Bradley SJ, Tsokos GC (2016) T cells in systemic lupus erythematosus. Curr Opin Immunol 43:32–38. https://doi.org/10.1016/j.coi.2016.09.001
doi: 10.1016/j.coi.2016.09.001
pubmed: 27636649
pmcid: 5125867
Tsokos GC, Lo MS, Reis PC, Sullivan KE (2016) New insights into the immunopathogenesis of systemic lupus erythematosus. Nat Rev Rheumatol 12(12):716–730. https://doi.org/10.1038/nrrheum.2016.186
doi: 10.1038/nrrheum.2016.186
pubmed: 27872476
Morand EF, Furie R, Tanaka Y et al (2020) Trial of anifrolumab in active systemic lupus erythematosus. N Engl J Med 382(3):211–221. https://doi.org/10.1056/NEJMoa1912196
doi: 10.1056/NEJMoa1912196
pubmed: 31851795
Rios-Garces R, Espinosa G, van Vollenhoven R, Cervera R (2020) Treat-to-target in systemic lupus erythematosus: where are we? Eur J Intern Med 74:29–34. https://doi.org/10.1016/j.ejim.2020.01.018
doi: 10.1016/j.ejim.2020.01.018
pubmed: 32014364
Illei GG, Takada K, Parkin D et al (2002) Renal flares are common in patients with severe proliferative lupus nephritis treated with pulse immunosuppressive therapy - long-term followup of a cohort of 145 patients participating in randomized controlled studies. Arthritis Rheum 46(4):995–1002. https://doi.org/10.1002/art.10142
doi: 10.1002/art.10142
pubmed: 11953977
Fanouriakis A, Kostopoulou M, Cheema K et al (2020) 2019 Update of the Joint European League Against Rheumatism and European Renal Association-European Dialysis and Transplant Association (EULAR/ERA-EDTA) recommendations for the management of lupus nephritis. Ann Rheum Dis 79(6):713–723. https://doi.org/10.1136/annrheumdis-2020-216924
doi: 10.1136/annrheumdis-2020-216924
pubmed: 32220834
Wang HY, Li YK, Naidech A, Luo Y (2022) Comparison between machine learning methods for mortality prediction for sepsis patients with different social determinants. Bmc Med Inform Decis Making 22(SUPPL 2). https://doi.org/10.1186/s12911-022-01871-0
Forrest IS, Petrazzini B, Duffy A et al (2023) Machine learning-based marker for coronary artery disease: derivation and validation in two longitudinal cohorts. Lancet 401(10372):215–225. https://doi.org/10.1016/s0140-6736(22)02079-7
doi: 10.1016/s0140-6736(22)02079-7
pubmed: 36563696
Catalina MD, Owen KA, Labonte AC, Grammer AC, Lipsky PE (2020) The pathogenesis of systemic lupus erythematosus: harnessing big data to understand the molecular basis of lupus. J Autoimmun 110. https://doi.org/10.1016/j.jaut.2019.102359
Kegerreis B, Catalina MD, Bachali P, et al. (2019) Machine learning approaches to predict lupus disease activity from gene expression data. Sci Rep 9. https://doi.org/10.1038/s41598-019-45989-0
Yan Y, Liu XY, Lu A, Wang XY, Jiang LX, Wang JC (2022) Non-viral vectors for RNA delivery. J Control Release 342:241–279. https://doi.org/10.1016/j.jconrel.2022.01.008
doi: 10.1016/j.jconrel.2022.01.008
pubmed: 35016918
pmcid: 8743282