Therapeutic Target MicroRNA Identification Based on Circular RNA Expression Signature After Intracerebral Hemorrhage.
Circular RNA
Insulin like growth factor
Intracerebral hemorrhage
MicroRNA
Journal
Molecular neurobiology
ISSN: 1559-1182
Titre abrégé: Mol Neurobiol
Pays: United States
ID NLM: 8900963
Informations de publication
Date de publication:
05 Sep 2023
05 Sep 2023
Historique:
received:
18
10
2022
accepted:
24
08
2023
medline:
5
9
2023
pubmed:
5
9
2023
entrez:
5
9
2023
Statut:
aheadofprint
Résumé
We investigated circular RNA (circRNA) expression pattern from a rat intracerebral hemorrhage (ICH) model and tested therapeutic strategy. Hemorrhagic stroke was induced by stereotactic collagenase injection. Brain was harvested at 1, 3, and 7 days after ICH induction to study circRNA expression. Significantly altered circRNAs from microarray were examined by quantitative real-time polymerase chain reaction. Predicted target microRNA and nearby messenger RNA levels of significantly altered circRNAs were validated from previously published database. Therapeutic strategy based on potential target microRNA of significantly depressed circRNA was examined using in vitro and in vivo hemorrhagic model. Both significantly elevated/downregulated circRNA increased as time passed after ICH: 9, 159, and 704 circRNAs were significantly elevated, whereas 19, 276, and 656 circRNAs were significantly depressed at 1, 3 and 7 days after ICH induction, respectively, out of 13,298 studied circRNAs. The most elevated circRNAs were rno_circRNA_002714 and rno_circRNA_002715, which are located closely each other in chromosome 10, within exon sequence of glial fibrillary acidic protein. The most significantly downregulated circRNA was rno_circRNA_016465, which has several complementary sequences for miR-466b. The most commonly predicted microRNA response element of significantly depressed circRNAs was miR-466b. The antagonistic sequence against miR-466b significantly decreased neuronal cell death and improved neurological recovery in a hemorrhagic stroke model by upregulating insulin like growth factor receptors 1 and 2. This study illustrated dynamic circRNA expression pattern in a hemorrhagic stroke model, which correlated with microRNA and messenger RNA expression, suggesting the regulatory role of RNA dynamics in ICH.
Identifiants
pubmed: 37668963
doi: 10.1007/s12035-023-03612-4
pii: 10.1007/s12035-023-03612-4
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : National Research Foundation
ID : NRF-2019R1F1A1059455; NRF-2022R1A2C2007064
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
An SJ, Kim TJ, Yoon BW (2017) Epidemiology, risk factors, and clinical features of intracerebral hemorrhage: an update. J Stroke 19:3–10
doi: 10.5853/jos.2016.00864
pubmed: 28178408
pmcid: 5307940
Cordonnier C, Demchuk A, Ziai W, Anderson CS (2018) Intracerebral haemorrhage: current approaches to acute management. Lancet 392:1257–1268
doi: 10.1016/S0140-6736(18)31878-6
pubmed: 30319113
Kim JM, Moon J, Yu JS, Park DK, Lee ST, Jung KH, Chu K (2019) Altered long noncoding RNA profile after intracerebral hemorrhage. Ann Clin Transl Neurol 6:2014–2025
doi: 10.1002/acn3.50894
pubmed: 31557399
pmcid: 6801204
Gokool A, Loy CT, Halliday GM, Voineagu I (2020) Circular RNAs: another layer of brain transcriptome complexity. Trends Neurosci 43:752–766
doi: 10.1016/j.tins.2020.07.007
pubmed: 32829926
Dube U, Del-Aguila JL, Li Z, Budde JP, Jiang S, Hsu S, Ibanez L, Fernandez MV, Farias F, Norton J, Gentsch J, Wang F, Salloway S, Masters CL, Lee JH, Graff-Radford NR, Chhatwal JP, Bateman RJ, Morris JC, Karch CM, Harari O, Cruchaga C, Dominantly Inherited Alzheimer Network (DIAN) (2019) An atlas of cortical circular RNA expression in Alzheimer disease brains demonstrates clinical and pathological associations. Nat Neurosci 22:1903–1912
doi: 10.1038/s41593-019-0501-5
pubmed: 31591557
pmcid: 6858549
Gokool A, Anwar F, Voineagu I (2020) The landscape of circular RNA expression in the human brain. Biol Psychiatry 87:294–304
doi: 10.1016/j.biopsych.2019.07.029
pubmed: 31570194
Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, Loewer A, Ziebold U, Landthaler M, Kocks C, le Noble F, Rajewsky N (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495:333–338
doi: 10.1038/nature11928
pubmed: 23446348
Schneider T, Bindereif A (2017) Circular RNAs: Coding or noncoding? Cell Res 27:724–725
doi: 10.1038/cr.2017.70
pubmed: 28508860
pmcid: 5518877
Mehta SL, Pandi G, Vemuganti R (2017) Circular RNA expression profiles alter significantly in mouse brain after transient focal ischemia. Stroke 48:2541–2548
doi: 10.1161/STROKEAHA.117.017469
pubmed: 28701578
pmcid: 5575968
Bai Y, Zhang Y, Han B, Yang L, Chen X, Huang R, Wu F, Chao J, Liu P, Hu G, Zhang JH, Yao H (2018) Circular RNA DLGAP4 ameliorates ischemic stroke outcomes by targeting miR-143 to regulate endothelial-mesenchymal transition associated with blood–brain barrier integrity. J Neurosci 38:32–50
doi: 10.1523/JNEUROSCI.1348-17.2017
pubmed: 29114076
pmcid: 6705810
Zuo L, Zhang L, Zu J, Wang Z, Han B, Chen B, Cheng M, Ju M, Li M, Shu G, Yuan M, Jiang W, Chen X, Yan F, Zhang Z, Yao H (2020) Circulating circular RNAs as biomarkers for the diagnosis and prediction of outcomes in acute ischemic stroke. Stroke 51:319–323
doi: 10.1161/STROKEAHA.119.027348
pubmed: 31690252
Jung KH, Chu K, Jeong SW, Han SY, Lee ST, Kim JY, Kim M, Roh JK (2004) HMG-CoA reductase inhibitor, atorvastatin, promotes sensorimotor recovery, suppressing acute inflammatory reaction after experimental intracerebral hemorrhage. Stroke 35:1744–1749
doi: 10.1161/01.STR.0000131270.45822.85
pubmed: 15166393
Ghosal S, Das S, Sen R, Basak P, Chakrabarti J (2013) Circ2Traits: a comprehensive database for circular RNA potentially associated with disease and traits. Front Genet 4:283
doi: 10.3389/fgene.2013.00283
pubmed: 24339831
pmcid: 3857533
Pasquinelli AE (2012) MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet 13:271–282
doi: 10.1038/nrg3162
pubmed: 22411466
Kim JM, Lee ST, Chu K, Jung KH, Kim JH, Yu JS, Kim S, Kim SH, Park DK, Moon J, Ban J, Kim M, Lee SK, Roh JK (2014) Inhibition of Let7c microRNA is neuroprotective in a rat intracerebral hemorrhage model. PLoS ONE 9:e97946
doi: 10.1371/journal.pone.0097946
pubmed: 24959881
pmcid: 4068982
Lee ST, Chu K, Jung KH, Kim JH, Huh JY, Yoon H, Park DK, Lim JY, Kim JM, Jeon D, Ryu H, Lee SK, Kim M, Roh JK (2012) miR-206 regulates brain-derived neurotrophic factor in Alzheimer disease model. Ann Neurol 72:269–277
doi: 10.1002/ana.23588
pubmed: 22926857
Mayer CA, Brunkhorst R, Niessner M, Pfeilschifter W, Steinmetz H, Foerch C (2013) Blood levels of glial fibrillary acidic protein (GFAP) in patients with neurological diseases. PLoS ONE 8:e62101
doi: 10.1371/journal.pone.0062101
pubmed: 23626774
pmcid: 3633915
Koldamova R, Fitz NF, Lefterov I (2014) ATP-binding cassette transporter A1: from metabolism to neurodegeneration. Neurobiol Dis Pt A:13–21
doi: 10.1016/j.nbd.2014.05.007
Cui X, Chopp M, Zacharek A, Karasinska JM, Cui Y, Ning R, Zhang Y, Wang Y, Chen J (2015) Deficiency of brain ATP-binding cassette transporter A-1 exacerbates blood-brain barrier and white matter damage after stroke. Stroke 46:827–834
doi: 10.1161/STROKEAHA.114.007145
pubmed: 25593138
pmcid: 4342295
Liu Z, Wu X, Yu Z, Tang X (2021) Reconstruction of circRNA-miRNA-mRNA associated ceRNA networks reveal functional circRNAs in intracerebral hemorrhage. Sci Rep 11:11584
doi: 10.1038/s41598-021-91059-9
pubmed: 34078991
pmcid: 8172571
Dou Z, Yu Q, Wang G, Wu S, Reis C, Ruan W, Yan F, Chen G (2020) Circular RNA expression profiles alter significantly after intracerebral hemorrhage in rats. Brain Res. ;1726;146490.
Lee WJ, Moon J, Jeon D, Kim TJ, Yoo JS, Park DK, Lee ST, Jung KH, Park KI, Jung KY, Kim M, Lee SK, Chu K (2018) Possible epigenetic regulatory effect of dysregulated circular RNAs in epilepsy. PLoS ONE 13:e0209829
doi: 10.1371/journal.pone.0209829
pubmed: 30592747
pmcid: 6310357
Lee WJ, Moon J, Jeon D, Shin YW, Yoo JS, Park DK, Lee ST, Jung KH, Park KI, Jung KY, Kim M, Lee SK, Chu K (2019) Possible epigenetic regulatory effect of dysregulated circular RNAs in Alzheimer’s disease model. Sci Rep 9:11956
doi: 10.1038/s41598-019-48471-z
pubmed: 31420566
pmcid: 6697677
Ferrón SR, Radford EJ, Domingo-Muelas A, Kleine I, Ramme A, Gray D, Sandovici I, Constancia M, Ward A, Menheniott TR, Ferguson-Smith AC (2015) Differential genomic imprinting regulates paracrine and autocrine roles of IGF2 in mouse adult neurogenesis. Nat Commun 6:8265
doi: 10.1038/ncomms9265
pubmed: 26369386
Ziegler AN, Feng Q, Chidambaram S, Testai JM, Kumari E, Rothbard DE, Constancia M, Sandovici I, Cominski T, Pang K, Gao N, Wood TL, Levison SW (2019) Insulin-like growth factor II: an essential adult stem cell niche constituent in brain and intestine. Stem Cell Reports 12:816–830
doi: 10.1016/j.stemcr.2019.02.011
pubmed: 30905741
pmcid: 6450461
Lewitt MS, Boyd GW (2019) The role of insulin-like growth factors and insulin-like growth factor–binding proteins in the nervous system. Biochem Insights 12:1178626419842176
doi: 10.1177/1178626419842176
pubmed: 31024217
pmcid: 6472167
Druz A, Chu C, Majors B, Santuary R, Betenbaugh M, Shiloach J (2011) A novel microRNA mmu-miR-466 h affects apoptosis regulation in mammalian cells. Biotechnol Bioeng 108:1651–1661
doi: 10.1002/bit.23092
pubmed: 21337326
pmcid: 3099433