Monitoring angiogenesis in skin autografts using photoacoustic microscopy.
angiogenesis
photoacoustic microscopy
skin autografts
wound healing
Journal
Journal of biophotonics
ISSN: 1864-0648
Titre abrégé: J Biophotonics
Pays: Germany
ID NLM: 101318567
Informations de publication
Date de publication:
05 Sep 2023
05 Sep 2023
Historique:
revised:
31
08
2023
received:
09
08
2023
accepted:
04
09
2023
pubmed:
5
9
2023
medline:
5
9
2023
entrez:
5
9
2023
Statut:
aheadofprint
Résumé
Skin autografts have been broadly used to manage the skin and soft tissue defects. It is important for surgeons to assess the vitality of skin autografts via observing the angiogenesis. However, there is lack of reliable approach for giving the quantitative angiogenesis information on the skin autografts. Recently, photoacoustic microscopy imaging has attracted much attention based on its good performance in angiography. In this study, we aim to monitor angiogenesis in skin autografts via PAM, and further verify its clinical potential for the early prediction of skin autografts clinical outcome. The results indicate that PAM is a feasible, precise, high-resolution, noninvasive technique for the early prediction of necrosis of skin autografts via monitoring the angiogenesis, providing a promising tool for surgeons to use this surgical technology.
Sections du résumé
BACKGROUND
BACKGROUND
Skin autografts have been broadly used to manage the skin and soft tissue defects. It is important for surgeons to assess the vitality of skin autografts via observing the angiogenesis. However, there is lack of reliable approach for giving the quantitative angiogenesis information on the skin autografts. Recently, photoacoustic microscopy imaging has attracted much attention based on its good performance in angiography.
METHODS
METHODS
In this study, we aim to monitor angiogenesis in skin autografts via PAM, and further verify its clinical potential for the early prediction of skin autografts clinical outcome.
RESULTS AND CONCLUSIONS
CONCLUSIONS
The results indicate that PAM is a feasible, precise, high-resolution, noninvasive technique for the early prediction of necrosis of skin autografts via monitoring the angiogenesis, providing a promising tool for surgeons to use this surgical technology.
Identifiants
pubmed: 37669433
doi: 10.1002/jbio.202300317
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e202300317Subventions
Organisme : Fundamental Research Funds for the Central Universities
Organisme : the Translational Medicine and Interdisciplinary Research Joint Fund of Zhongnan Hospital of Wuhan University
Organisme : the Trauma Microsurgery Clinical Medical Research Center of Hubei Province
Organisme : Zhongnan Hospital of Wuhan University, Excellent Doctor Fund Project
Informations de copyright
© 2023 Wiley-VCH GmbH.
Références
E. I. Chang, Plast. Reconstr. Surg. 2023, 152, 184.
V. Zholtikov, A. Kosins, R. Ouerghi, R. K. Daniel, Aesthet. Surg. J. 2023, 43, 422.
C. Dai, S. Shih, A. Khachemoune, J. Dermatolog. Treat. 2020, 31, 639.
B. C. Carney, L. S. Johnson, J. W. Shupp, T. E. Travis, J. Burn Care Res. 2021, 42, 633.
S. Amini-Nik, R. Dolp, G. Eylert, A. K. Datu, A. Parousis, C. Blakeley, M. G. Jeschke, EBioMedicine 2018, 37, 509.
I. Herskovitz, O. B. Hughes, F. Macquhae, A. Rakosi, R. Kirsner, Int. Wound J. 2016, 13, 52.
D. O. Kodie, N. S. Oyetayo, O. O. Aina, O. D. Eyarefe, BMC Vet. Res. 2022, 18, 94.
F. Schlottmann, V. Bucan, P. M. Vogt, N. Krezdorn, Medicina (Kaunas) 2021, 57, 225.
T. Yamamoto, H. Iwase, T. W. King, H. Hara, D. K. C. Cooper, Burns 2018, 44, 1738.
J. E. Jones, E. A. Nelson, A. Al-Hity, Cochrane Database Syst. Rev. 2013, 2013, Cd001737.
E. Eriksson, P. Y. Liu, G. S. Schultz, M. M. Martins-Green, R. Tanaka, D. Weir, L. J. Gould, D. G. Armstrong, G. W. Gibbons, R. Wolcott, O. O. Olutoye, R. S. Kirsner, G. C. Gurtner, Wound Repair Regen. 2022, 30, 156.
L. F. Busch, S. A. Alawi, World J. Plast. Surg. 2020, 9, 259.
L. Manzo, L. Di Maggio, D. Castellano, D. Savio, Cardiovasc. Intervent. Radiol. 2023, 46, 815.
M. P. Opolski, J. Thorac. Imaging 2018, 33, 35.
S. Yamashita, M. Kohta, K. Hosoda, J. Tanaka, K. Matsuo, H. Kimura, K. Tanaka, A. Fujita, T. Sasayama, AJNR Am. J. Neuroradiol. 2022, 43, 1124.
B. Park, D. Oh, J. Kim, C. Kim, Nano Converg. 2023, 10, 29.
X. L. Deán-Ben, J. Robin, D. Nozdriukhin, R. Ni, J. Zhao, C. Glück, J. Droux, J. Sendón-Lago, Z. Chen, Q. Zhou, B. Weber, S. Wegener, A. Vidal, M. Arand, M. El Amki, D. Razansky, Nat. Commun. 2023, 14, 3584.
S. H. Han, Neurospine 2018, 15, 306.
S. Jeon, J. Kim, D. Lee, J. W. Baik, C. Kim, Photoacoustics 2019, 15, 100141.
D. Zhang, Y. Yuan, H. Zhang, X. Yi, W. Xiao, A. Yu, Clin. Cosmet. Investig. Dermatol. 2021, 14, 837.
M. Kohlhauser, H. Luze, S. P. Nischwitz, L. P. Kamolz, Medicina (Kaunas) 2021, 57, 348.
Z. Wang, H. Xu, H. Yang, Y. Zhang, X. Wang, P. Wang, Z. Xu, D. Lv, Y. Rong, Y. Dong, B. Tang, Z. Hu, W. Deng, J. Zhu, Stem Cell Res. Ther. 2023, 14, 51.
L. Atkin, Br. J. Community Nurs. 2019, 24, S26.
J. Holl, C. Kowalewski, Z. Zimek, P. Fiedor, A. Kaminski, T. Oldak, M. Moniuszko, A. Eljaszewicz, Cell 2021, 10, 655.
Q. H. Phua, H. A. Han, B. S. Soh, J. Transl. Med. 2021, 19, 83.
S. Hussain, I. Mubeen, N. Ullah, S. Shah, B. A. Khan, M. Zahoor, R. Ullah, F. A. Khan, M. A. Sultan, Biomed. Res. Int. 2022, 2022, 5164970.
D. Zhang, H. Chen, X. Hu, A. Yu, Quant. Imaging Med. Surg. 2021, 11, 4365.
W. J. Mulder, A. W. Griffioen, Angiogenesis 2010, 13, 71.
G. Pirovano, S. Roberts, S. Kossatz, T. Reiner, J. Nucl. Med. 2020, 61, 1419.
R. Cao, J. Li, Y. Kharel, C. Zhang, E. Morris, W. L. Santos, K. R. Lynch, Z. Zuo, S. Hu, Theranostics 2018, 8, 6111.
R. Cao, J. Li, C. Zhang, Z. Zuo, S. Hu, Neuroimage 2019, 188, 369.
F. Yang, Z. Wang, W. Zhang, H. Ma, Z. Cheng, Y. Gu, H. Qiu, S. Yang, J. Biophotonics 2020, 13, e202000022.