Biasing the Formation of Solution-Unstable Intermediates in Coordination Self-Assembly by Mechanochemistry.
ball mill
mechanochemistry
metal-coordination
self-assembly
supramolecular chemistry
Journal
Chemistry (Weinheim an der Bergstrasse, Germany)
ISSN: 1521-3765
Titre abrégé: Chemistry
Pays: Germany
ID NLM: 9513783
Informations de publication
Date de publication:
01 Dec 2023
01 Dec 2023
Historique:
received:
07
08
2023
medline:
6
9
2023
pubmed:
6
9
2023
entrez:
5
9
2023
Statut:
ppublish
Résumé
Due to the reversible nature of coordination bonds and solvation effect, coordination self-assembly pathways are often difficult to elucidate experimentally in solution, as intermediates and products are in constant equilibration. The present study shows that some of these transient and high-energy self-assembly intermediates can be accessed by means of ball-milling approaches. Among them, highly aqueous-unstable Pd
Identifiants
pubmed: 37670119
doi: 10.1002/chem.202302563
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e202302563Informations de copyright
© 2023 Wiley-VCH GmbH.
Références
Nummerierung?
P. Jin, S. J. Dalgarno, J. L. Atwood, Coord. Chem. Rev. 2010, 254, 1760-1768;
T. R. Cook, P. J. Stang, Chem. Rev. 2015, 115, 7001-7045;
A. J. Gosselin, C. A. Rowland, E. D. Bloch, Chem. Rev. 2020, 120, 8987-9014;
T. R. Cook, P. J. Stang, Chem. Rev. 2015, 115, 7001-7045;
M. D. Ward, Chem. Commun. 2009, 30, 4487-4499;
N. B. Debata, D. Tripathy, H. S. Sahoo, Coord. Chem. Rev. 2019, 387, 273-298.
T. Sawada, Y. Inomata, K. Shimokawa, M. Fujita, Nat. Commun. 2019, 10, 5687;
X.-Q. Guo, L.-P. Zhou, S.-J. Hu, L.-X. Cai, P.-M. Cheng, Q.-F. Sun, J. Am. Chem. Soc. 2021, 143, 6202-6210;
J. Dong, Y. Liu, Y. Cui, J. Am. Chem. Soc. 2021, 143, 17316-17336;
S. L. Heinz-Kunert, A. Pandya, V. T. Dang, P. N. Tran, S. Ghosh, D. McElheny, B. D. Santarsiero, Z. Ren, An. I. Nguyen, J. Am. Chem. Soc. 2022, 144, 7001-7009;
N. Bajpayee, T. Vijayakanth, S. Rencus-Lazar, S. Dasgupta, A. V. Desai, R. Jain, E. Gazit, R. Misra, Angew. Chem. Int. Ed. 2023, 62, e202214583;
Angew. Chem. 2023, 135, e202214583;
T. Sawada, M. Fujita, Chem 2020, 6, 1861-1876.
D. Fujita, Y. Ueda, S. Sato, H. Yokoyama, N. Mizuno, T. Kumasaka, M. Fujita, Chem 2016, 1, 91-101;
D. Fujita, Y. Ueda, S. Sato, N. Mizuno, T. Kumasaka, M. Fujita, Nature 2016, 540, 563-566;
Y.-S. Chen, E. Solel, Y.-F. Huang, C.-L. Wang, T.-H. Tu, E. Keinan, Y.-T. Chan, Nat. Commun. 2019, 10, 3443.
C. O. Dietrich-Buchecker, J.-P. Sauvage, Angew. Chem. Int. Ed. 1989, 28, 189-192;
Angew. Chem. 1989, 101, 192-194;
K. S. Chichak, S. J. Cantrill, A. R. Pease, S.-H. Chiu, G. W. V. Cave, J. L. Atwood, J. Fraser Stoddart, Science 2004, 304, 1308-1312;
C. D. Pentecost, K. S. Chichak, A. J. Peters, G. W. V. Cave, S. J. Cantrill, J. F. Stoddart, Angew. Chem. Int. Ed. 2007, 46, 218-222;
Angew. Chem. 2007, 119, 222-226;
J. Guo, P. C. Mayers, G. A. Breault, C. A. Hunter, Nat. Chem. 2010, 2, 218-222;
J. J. Danon, A. Krüger, D. A. Leigh, J.-F. Lemonnier, A. J. Stephens, I. J. Vitorica-Yrezabal, S. L. Woltering, Science 2017, 355, 159-162.
C. S. Diercks, M. J. Kalmutzki, N. J. Diercks, O. M. Yaghi, ACS Cent. Sci. 2018, 4, 1457-1464.
F. J. Rizzuto, L. K. S. von Krbek, J. R. Nitschke, Nat. Rev. Chem. 2019, 3, 204-222.
C. J. Brown, F. D. Toste, R. G. Bergman, K. N. Raymond, Chem. Rev. 2015, 115, 3012-3035.
M. Yamashina, Y. Tanaka, R. Lavendomme, T. K. Ronson, M. Pittelkow, J. R. Nitschke, Nature 2019, 574, 511-515.
K. Ni, G. Lan, W. Lin, ACS Cent. Sci. 2020, 6, 861-868;
S. K. Samanta, L. Isaacs, Coord. Chem. Rev. 2020, 410, 213181.
L. Ma, C. J. E. Haynes, A. B. Grommet, A. Walczak, C. C. Parkins, C. M. Doherty, L. Longley, A. Tron, A. R. Stefankiewicz, T. D. Bennett, J. R. Nitschke, Nat. Chem. 2020, 12, 270-275;
A. Goswami, S. Saha, P. K. Biswas, M. Schmittel, Chem. Rev. 2020, 120, 125-199;
X. Hu, M. Han, L. Shao, C. Zhang, L. Zhang, S. P. Kelley, C. Zhang, J. Lin, S. J. Dalgarno, D. A. Atwood, S. Feng, J. L. Atwood, Angew. Chem. Int. Ed. 2021, 60, 10516-10520.
G.-F. Feng, J. Geng, F.-D. Feng, W. Huang, Sci. Rep. 2020, 10, 4712-4716;
K. Zhang, H. Qian, L. Zhang, W. Huang, Inorg. Chem. 2015, 54, 675-681;
C. J. Pugh, V. Santolini, R. L. Greenaway, M. A. Little, M. E. Briggs, K. E. Jelfs, A. I. Cooper, Cryst. Growth Des. 2018, 18, 2759-2764;
A. B. Pun, K. J. Gagnon, L. M. Klivansky, S. J. Teat, Z.-T. Li, Y. Liu, Org. Chem. Front. 2014, 1, 167-175;
H. Chen, C. Huang, Y. Deng, Q. Sun, Q.-L. Zhang, B.-X. Zhu, X.-L. Ni, ACS Nano 2019, 13, 2840-2848.
Examples of using mechanochemistry to construct supramolecular discrete structures:
T. Friščič, Chem. Soc. Rev. 2012, 41, 3493-3510;
A. Bose, P. Mal, Beilstein J. Org. Chem. 2019, 15, 881-900, and references herein.
A. Orita, L. Jiang, T. Nakano, N. Ma, J. Otera, Chem. Commun. 2002, 1362-1363.
C. Giri, P. K. Sahoo, R. Puttreddy, K. Rissanen, P. Mal, Chem.-Eur. J. 2015, 21, 6390-6393.
Y. Liu, F.-Z. Liu, K. Yan, Angew. Chem. Int. Ed. 2022, e202116980;
Angew. Chem. 2022, e202116980.
S. Hiraoka, Isr. J. Chem. 2019, 59, 151-165;
C. S. Mallis, M. L. Saha, P. J. Stang, D. H. Russell, J. Am. Soc. Mass Spectrom. 2019, 30, 1654-1662;
M. Yoneya, S. Tsuzuki, T. Yamaguchi, S. Sato, M. Fujita, ACS Nano 2014, 8, 1290-1296;
Y. Jiang, H. Zhang, Z. Cui, T. Tan, J. Phys. Chem. Lett. 2017, 8, 2082-2086;
S. Takahashi, S. Luchi, S. Hiraoka, H. Sato, Phys. Chem. Chem. Phys. 2023, 33, 14659-14671.
M. Fujita, D. Oguro, M. Miyazawa, H. Oka, K. Yamaguchi, K. Ogura, Nature 1995, 378, 469-471.
The milled sample was dissolved in D2O and the NMR sample was injected into an NMR spectrometer as quickly as possible (within 2 min) to minimize further solution reaction of the solid sample. After that, data acquisition began immediately to acquire the first spectrum.
S. Komine, S. Takahashi, T. Kojima, H. Sato, S. Hiraoka, J. Am. Chem. Soc. 2019, 141, 3178-3186.
J.-L. Do, T. Friščić, ACS Cent. Sci. 2017, 3, 13-19;
P. Ying, J. Yu, W. Su, Adv. Synth. Catal. 2021, 363, 1246-1271.
S. L. James, C. J. Adams, C. Bolm, D. Braga, P. Collier, T. Friščić, F. Grepioni, K. D. M. Harris, G. Hyett, W. Jones, A. Krebs, J. Mack, L. Maini, A. G. Orpen, I. P. Parkin, W. C. Shearouse, J. W. Steed, D. C. Waddell, Chem. Soc. Rev. 2012, 41, 413-447;
K. Kubota, H. Ito, Trends Chem. 2020, 2, 1066-1081;
T. Friščić, C. Mottillo, H. M. Titi, Angew. Chem. Int. Ed. 2020, 59, 1018-1029;
Angew. Chem. 2020, 132, 1030-1041.
D. Samanta, S. Mukherjee, Y. P. Patil, P. S. Mukherjee, Chem. Eur. J. 2012, 18, 12322-12329.
Crystallographic data for 10 a: C88H120N40O19Pd4; 0.2×0.15×0.1 mm3; triclinic, space group P-1;
=15.6971(18), b=21.559(3), c=21.610(3) Å; α=65.674(4), β=77.070(3), γ=76.860°; V=6419.2(14) Å3; Z=2; ρcalc=1.277 gcm−3; T=150.0 K; 58606 reflections collected, 25496 independent, 138 parameters; μ=3.396 mm−1; R1=0.1256 [I >=2σ(I)], wR2=0.3336 (all data). CCDC 2093013.[24].
Deposition Number 2093013 contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
During our manuscript preparation, a report by Klajn and co-workers was published on the characterization of 10 a, see Ref. [25b];
O. Yanshyna, M. J. Bialek, O. V. Chashchikhin, R. Klajn, Commun. Chem. 2022, 5, 44.