Effect of asciminib and vitamin K2 on Abelson tyrosine-kinase-inhibitor-resistant chronic myelogenous leukemia cells.
Chronic myeloid leukemia
Imatinib resistance
Ponatinib
STAMP inhibitor
Vitamin K2
Journal
BMC cancer
ISSN: 1471-2407
Titre abrégé: BMC Cancer
Pays: England
ID NLM: 100967800
Informations de publication
Date de publication:
05 Sep 2023
05 Sep 2023
Historique:
received:
04
02
2023
accepted:
16
08
2023
medline:
7
9
2023
pubmed:
6
9
2023
entrez:
5
9
2023
Statut:
epublish
Résumé
Abelson (ABL) tyrosine kinase inhibitors (TKIs) are effective against chronic myeloid leukemia (CML); however, many patients develop resistance during ABL TKI therapy. Vitamin K2 (VK2) is a crucial fat-soluble vitamin used to activate hepatic coagulation factors and treat osteoporosis. Although VK2 has demonstrated impressive anticancer activity in various cancer cell lines, it is not known whether VK2 enhances the effects of asciminib, which specifically targets the ABL myristoyl pocket (STAMP) inhibitor. In this work, we investigated whether VK2 contributed to the development of CML cell lines. We also investigated the efficacy of asciminib and VK2 by using K562, ponatinib-resistant K562 (K562 PR), Ba/F3 BCR-ABL, and T315I point mutant Ba/F3 (Ba/F3 T315I) cells. Based on data from the Gene Expression Omnibus (GEO) database, gamma-glutamyl carboxylase (GGCX) and vitamin K epoxide reductase complex subunit 1 (VKORC1) were elevated in imatinib-resistant patients (GSE130404). UBIA Prenyltransferase Domain Containing 1 (UBIAD1) was decreased, and K562 PR cells were resistant to ponatinib. In contrast, asciminib inhibited CML cells and ponatinib resistance in a dose-dependent manner. CML cells were suppressed by VK2. Caspase 3/7 activity was also elevated, as was cellular cytotoxicity. Asciminib plus VK2 therapy induced a significantly higher level of cytotoxicity than use of each drug alone. Asciminib and VK2 therapy altered the mitochondrial membrane potential. Asciminib and VK2 are suggested as a novel treatment for ABL-TKI-resistant cells since they increase treatment efficacy. Additionally, this treatment option has intriguing clinical relevance for patients who are resistant to ABL TKIs.
Sections du résumé
BACKGROUND
BACKGROUND
Abelson (ABL) tyrosine kinase inhibitors (TKIs) are effective against chronic myeloid leukemia (CML); however, many patients develop resistance during ABL TKI therapy. Vitamin K2 (VK2) is a crucial fat-soluble vitamin used to activate hepatic coagulation factors and treat osteoporosis. Although VK2 has demonstrated impressive anticancer activity in various cancer cell lines, it is not known whether VK2 enhances the effects of asciminib, which specifically targets the ABL myristoyl pocket (STAMP) inhibitor.
METHOD
METHODS
In this work, we investigated whether VK2 contributed to the development of CML cell lines. We also investigated the efficacy of asciminib and VK2 by using K562, ponatinib-resistant K562 (K562 PR), Ba/F3 BCR-ABL, and T315I point mutant Ba/F3 (Ba/F3 T315I) cells.
RESULTS
RESULTS
Based on data from the Gene Expression Omnibus (GEO) database, gamma-glutamyl carboxylase (GGCX) and vitamin K epoxide reductase complex subunit 1 (VKORC1) were elevated in imatinib-resistant patients (GSE130404). UBIA Prenyltransferase Domain Containing 1 (UBIAD1) was decreased, and K562 PR cells were resistant to ponatinib. In contrast, asciminib inhibited CML cells and ponatinib resistance in a dose-dependent manner. CML cells were suppressed by VK2. Caspase 3/7 activity was also elevated, as was cellular cytotoxicity. Asciminib plus VK2 therapy induced a significantly higher level of cytotoxicity than use of each drug alone. Asciminib and VK2 therapy altered the mitochondrial membrane potential.
CONCLUSIONS
CONCLUSIONS
Asciminib and VK2 are suggested as a novel treatment for ABL-TKI-resistant cells since they increase treatment efficacy. Additionally, this treatment option has intriguing clinical relevance for patients who are resistant to ABL TKIs.
Identifiants
pubmed: 37670241
doi: 10.1186/s12885-023-11304-4
pii: 10.1186/s12885-023-11304-4
pmc: PMC10478393
doi:
Substances chimiques
Vitamin K 2
11032-49-8
asciminib
0
Protein Kinase Inhibitors
0
Tyrosine
42HK56048U
VKORC1 protein, human
EC 1.17.4.4
Vitamin K Epoxide Reductases
EC 1.17.4.4
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
827Subventions
Organisme : Seiichi Okabe
ID : 20K07644
Informations de copyright
© 2023. BioMed Central Ltd., part of Springer Nature.
Références
Faderl S, Talpaz M, Estrov Z, O’Brien S, Kurzrock R, Kantarjian HM. The biology of chronic myeloid leukemia. N Engl J Med. 1999;341:164–72.
doi: 10.1056/NEJM199907153410306
pubmed: 10403855
Ren R. Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer. 2005;5:172–83.
doi: 10.1038/nrc1567
pubmed: 15719031
Jabbour E, Kantarjian H. Chronic myeloid leukemia: 2018 update on diagnosis, therapy and monitoring. Am J Hematol. 2018;93:442–59.
doi: 10.1002/ajh.25011
pubmed: 29411417
García-Gutiérrez V, Breccia M, Jabbour E, Mauro M, Cortes JE. A clinician perspective on the treatment of chronic myeloid leukemia in the chronic phase. J Hematol Oncol. 2022;15:90.
doi: 10.1186/s13045-022-01309-0
pubmed: 35818053
pmcid: 9272596
Schoepfer J, Jahnke W, Berellini G, Buonamici S, Cotesta S, Cowan-Jacob SW, et al. Discovery of asciminib (ABL001), an allosteric inhibitor of the tyrosine kinase activity of BCR-ABL1. J Med Chem. 2018;61:8120–35.
doi: 10.1021/acs.jmedchem.8b01040
pubmed: 30137981
Réa D, Hughes TP. Development of asciminib, a novel allosteric inhibitor of BCR-ABL1. Crit Rev Oncol Hematol. 2022;171:103580.
doi: 10.1016/j.critrevonc.2022.103580
pubmed: 35021069
Merli GJ, Fink J. Vitamin K and thrombosis. Vitam Horm. 2008;78:265–79.
doi: 10.1016/S0083-6729(07)00013-1
pubmed: 18374199
Halder M, Petsophonsakul P, Akbulut AC, Pavlic A, Bohan F, Anderson E, et al. Vitamin K: double bonds beyond coagulation insights into differences between vitamin K1 and K2 in health and disease. Int J Mol Sci. 2019;20:896.
doi: 10.3390/ijms20040896
pubmed: 30791399
pmcid: 6413124
Gul S, Maqbool MF, Maryam A, Khan M, Shakir HA, Irfan M, et al. Vitamin K: a novel cancer chemosensitizer. Biotechnol Appl Biochem. 2022;69:2641–57.
doi: 10.1002/bab.2312
pubmed: 34993998
Yokoyama T, Miyazawa K, Naito M, Toyotake J, Tauchi T, Itoh M, et al. Vitamin K2 induces autophagy and apoptosis simultaneously in leukemia cells. Autophagy. 2008;4:629–40.
doi: 10.4161/auto.5941
pubmed: 18376138
Miyazawa S, Moriya S, Kokuba H, Hino H, Takano N, Miyazawa K. Vitamin K2 induces non-apoptotic cell death along with autophagosome formation in breast cancer cell lines. Breast Cancer. 2020;27:225–35.
doi: 10.1007/s12282-019-01012-y
pubmed: 31625014
Yokoyama T, Miyazawa K, Yoshida T, Ohyashiki K. Combination of vitamin K2 plus imatinib mesylate enhances induction of apoptosis in small cell lung cancer cell lines. Int J Oncol. 2005;26:33–40.
pubmed: 15586222
Kimura S, Naito H, Segawa H, Kuroda J, Yuasa T, Sato K, et al. NS-187, a potent and selective dual Bcr-Abl/Lyn tyrosine kinase inhibitor, is a novel agent for imatinib-resistant leukemia. Blood. 2005;106:3948–54.
doi: 10.1182/blood-2005-06-2209
pubmed: 16105974
Okabe S, Tanaka Y, Moriyama M, Gotoh A. Efficacy of dasatinib against ponatinib-resistant chronic myeloid leukemia cells. Leuk Lymphoma. 2020;61:237–9.
doi: 10.1080/10428194.2019.1660971
pubmed: 31502898
Kok CH, Yeung DT, Lu L, Watkins DB, Leclercq TM, Dang P, et al. Gene expression signature that predicts early molecular response failure in chronic-phase CML patients on frontline imatinib. Blood Adv. 2019;3:1610–21.
doi: 10.1182/bloodadvances.2019000195
pubmed: 31126916
pmcid: 6538873
Okabe S, Tanaka Y, Gotoh A. Targeting phosphoinositide 3-kinases and histone deacetylases in multiple myeloma. Exp Hematol Oncol. 2021;10:19.
doi: 10.1186/s40164-021-00213-6
pubmed: 33663586
pmcid: 7934550
Okabe S, Tanaka Y, Gotoh A. Therapeutic targeting of PFKFB3 and PFKFB4 in multiple myeloma cells under hypoxic conditions. Biomark Res. 2022;10:31.
doi: 10.1186/s40364-022-00376-2
pubmed: 35578370
pmcid: 9109357
Massaro F, Molica M, Breccia M, Ponatinib. A review of efficacy and safety. Curr Cancer Drug Targets. 2018;18:847–56.
doi: 10.2174/1568009617666171002142659
pubmed: 28969556
Walsh JG, Cullen SP, Sheridan C, Lüthi AU, Gerner C, Martin SJ. Executioner caspase-3 and caspase-7 are functionally distinct proteases. Proc Natl Acad Sci USA. 2008;105:12815–9.
doi: 10.1073/pnas.0707715105
pubmed: 18723680
pmcid: 2529079
Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C. Clonogenic assay of cells in vitro. Nat Protoc. 2006;1:2315–9.
doi: 10.1038/nprot.2006.339
pubmed: 17406473
Li D, Dong Q, Tao Q, Gu J, Cui Y, Jiang X, et al. c-Abl regulates proteasome abundance by controlling the ubiquitin-proteasomal degradation of PSMA7 subunit. Cell Rep. 2015;10:484–96.
doi: 10.1016/j.celrep.2014.12.044
pubmed: 25620702
Crawford LJ, Chan ET, Aujay M, Holyoake TL, Melo JV, Jorgensen HG, et al. Synergistic effects of proteasome inhibitor carfilzomib in combination with tyrosine kinase inhibitors in imatinib-sensitive and -resistant chronic myeloid leukemia models. Oncogenesis. 2014;3:e90.
doi: 10.1038/oncsis.2014.3
pubmed: 24590311
pmcid: 3940921
Sakamuru S, Attene-Ramos MS, Xia M. Mitochondrial membrane potential assay. Methods Mol Biol. 2016;1473:17–22.
doi: 10.1007/978-1-4939-6346-1_2
pubmed: 27518619
pmcid: 5375165
Lv J, Bhatia M, Wang X. Roles of mitochondrial DNA in energy metabolism. Adv Exp Med Biol. 2017;1038:71–83.
doi: 10.1007/978-981-10-6674-0_6
pubmed: 29178070
Bhamidipati PK, Kantarjian H, Cortes J, Cornelison AM, Jabbour E. Management of imatinib-resistant patients with chronic myeloid leukemia. Ther Adv Hematol. 2013;4:103–17.
doi: 10.1177/2040620712468289
pubmed: 23610618
pmcid: 3629755
Cross NC, White HE, Colomer D, Ehrencrona H, Foroni L, Gottardi E, et al. Laboratory recommendations for scoring deep molecular responses following treatment for chronic myeloid leukemia. Leukemia. 2015;29:999–1003.
doi: 10.1038/leu.2015.29
pubmed: 25652737
pmcid: 4430701
Baccarani M, Deininger MW, Rosti G, Hochhaus A, Soverini S, Apperley JF, et al. European leukemia net recommendations for the management of chronic myeloid leukemia: 2013. Blood. 2013;122:872–84.
doi: 10.1182/blood-2013-05-501569
pubmed: 23803709
pmcid: 4915804
Hao Z, Jin DY, Stafford DW, Tie JK. Vitamin K-dependent carboxylation of coagulation factors: insights from a cell-based functional study. Haematologica. 2020;105:2164–73.
doi: 10.3324/haematol.2019.229047
pubmed: 31624106
pmcid: 7395276
Garcia AA, Reitsma PH. VKORC1 and the vitamin K cycle. Vitam Horm. 2008;78:23–33.
doi: 10.1016/S0083-6729(07)00002-7
pubmed: 18374188
Hirota Y, Nakagawa K, Sawada N, Okuda N, Suhara Y, Uchino Y, et al. Functional characterization of the vitamin K2 biosynthetic enzyme UBIAD1. PLoS ONE. 2015;10:e0125737.
doi: 10.1371/journal.pone.0125737
pubmed: 25874989
pmcid: 4398444
Beaudin S, Kokabee L, Welsh J. Divergent effects of vitamins K1 and K2 on triple negative breast cancer cells. Oncotarget. 2019;10:2292–305.
doi: 10.18632/oncotarget.26765
pubmed: 31040920
pmcid: 6481349
Fredericks WJ, Yin H, Lal P, Puthiyaveettil R, Malkowicz SB, Fredericks NJ, et al. Ectopic expression of the TERE1 (UBIAD1) protein inhibits growth of renal clear cell carcinoma cells: altered metabolic phenotype associated with reactive oxygen species, nitric oxide and SXR target genes involved in cholesterol and lipid metabolism. Int J Oncol. 2013;43:638–52.
doi: 10.3892/ijo.2013.1985
pubmed: 23759948
Ouyang L, Shi Z, Zhao S, Wang FT, Zhou TT, Liu B, et al. Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif. 2012;45:487–98.
doi: 10.1111/j.1365-2184.2012.00845.x
pubmed: 23030059
pmcid: 6496669
Xv F, Chen J, Duan L, Li S. Research progress on the anticancer effects of vitamin K2. Oncol Lett. 2018;15:8926–34.
pubmed: 29805627
pmcid: 5958717
Eide CA, Zabriskie MS, Savage Stevens SL, Antelope O, Vellore NA, Than H, et al. Combining the allosteric inhibitor asciminib with ponatinib suppresses emergence of and restores efficacy against highly resistant BCR-ABL1 mutants. Cancer Cell. 2019;36:431–43.
doi: 10.1016/j.ccell.2019.08.004
pubmed: 31543464
pmcid: 6893878