Intracranial pressure for clinicians: it is not just a number.
Intracranial pressure
Multimodality monitoring
Optimal CPP
Spectral analysis
Traumatic brain injury
Journal
Journal of anesthesia, analgesia and critical care
ISSN: 2731-3786
Titre abrégé: J Anesth Analg Crit Care
Pays: England
ID NLM: 9918591885906676
Informations de publication
Date de publication:
05 Sep 2023
05 Sep 2023
Historique:
received:
29
06
2023
accepted:
16
08
2023
medline:
6
9
2023
pubmed:
6
9
2023
entrez:
5
9
2023
Statut:
epublish
Résumé
Invasive intracranial pressure (ICP) monitoring is a standard practice in severe brain injury cases, where it allows to derive cerebral perfusion pressure (CPP); ICP-tracing can also provide additional information about intracranial dynamics, forecast episodes of intracranial hypertension and set targets for a tailored therapy to prevent secondary brain injury. Nevertheless, controversies about the advantages of an ICP clinical management are still debated. This article reviews recent research on ICP to improve the understanding of the topic and uncover the hidden information in this signal that may be useful in clinical practice. Parameters derived from time-domain as well as frequency domain analysis include compensatory reserve, autoregulation estimation, pulse waveform analysis, and behavior of ICP in time. The possibility to predict the outcome and apply a tailored therapy using a personalised perfusion pressure target is also described. ICP is a crucial signal to monitor in severely brain injured patients; a bedside computer can empower standard monitoring giving new metrics that may aid in clinical management, establish a personalized therapy, and help to predict the outcome. Continuous collaboration between engineers and clinicians and application of new technologies to healthcare, is vital to improve the accuracy of current metrics and progress towards better care with individualized dynamic targets.
Sections du résumé
BACKGROUND
BACKGROUND
Invasive intracranial pressure (ICP) monitoring is a standard practice in severe brain injury cases, where it allows to derive cerebral perfusion pressure (CPP); ICP-tracing can also provide additional information about intracranial dynamics, forecast episodes of intracranial hypertension and set targets for a tailored therapy to prevent secondary brain injury. Nevertheless, controversies about the advantages of an ICP clinical management are still debated.
FINDINGS
RESULTS
This article reviews recent research on ICP to improve the understanding of the topic and uncover the hidden information in this signal that may be useful in clinical practice. Parameters derived from time-domain as well as frequency domain analysis include compensatory reserve, autoregulation estimation, pulse waveform analysis, and behavior of ICP in time. The possibility to predict the outcome and apply a tailored therapy using a personalised perfusion pressure target is also described.
CONCLUSIONS
CONCLUSIONS
ICP is a crucial signal to monitor in severely brain injured patients; a bedside computer can empower standard monitoring giving new metrics that may aid in clinical management, establish a personalized therapy, and help to predict the outcome. Continuous collaboration between engineers and clinicians and application of new technologies to healthcare, is vital to improve the accuracy of current metrics and progress towards better care with individualized dynamic targets.
Identifiants
pubmed: 37670387
doi: 10.1186/s44158-023-00115-5
pii: 10.1186/s44158-023-00115-5
pmc: PMC10481563
doi:
Types de publication
Journal Article
Review
Langues
eng
Pagination
31Informations de copyright
© 2023. Italian Society of Anesthesia, Analgesia, Resuscitation and Intensive Care.
Références
J Neurotrauma. 2010 Feb;27(2):317-24
pubmed: 19852586
Acta Neurochir Suppl. 2021;131:181-185
pubmed: 33839842
J Neurotrauma. 2017 Aug 15;34(16):2425-2431
pubmed: 28385097
Neurosurgery. 2017 Jan 01;80(1):6-15
pubmed: 27654000
Neurocrit Care. 2009;11(2):143-50
pubmed: 19565359
Br J Neurosurg. 2004 Feb;18(1):56-61
pubmed: 15040716
J Neurosurg. 1975 Nov;43(5):523-34
pubmed: 1181384
J Neurosurg. 1978 Mar;48(3):332-44
pubmed: 632857
J Neurotrauma. 2018 Jan 1;35(1):54-63
pubmed: 28726590
PLoS Med. 2017 Jul 25;14(7):e1002348
pubmed: 28742798
J Clin Monit Comput. 2021 Apr;35(2):423-425
pubmed: 32036500
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:4331-4
pubmed: 19963821
Crit Care Med. 2005 Oct;33(10):2207-13
pubmed: 16215372
Eur J Emerg Med. 1996 Jun;3(2):109-27
pubmed: 9028756
Handb Clin Neurol. 2017;140:67-89
pubmed: 28187815
Physiol Meas. 2005 Aug;26(4):373-86
pubmed: 15886433
J Cereb Blood Flow Metab. 2015 Feb;35(2):248-56
pubmed: 25407266
J Neurotrauma. 2017 Dec 1;34(23):3224-3237
pubmed: 28699412
Minerva Anestesiol. 2021 Dec;87(12):1359-1366
pubmed: 34337922
Crit Care Med. 2013 Feb;41(2):554-64
pubmed: 23263587
Intensive Care Med. 2019 Dec;45(12):1783-1794
pubmed: 31659383
Crit Care Med. 2010 May;38(5):1343-7
pubmed: 20154598
J Neurol Neurosurg Psychiatry. 1997 Dec;63(6):721-31
pubmed: 9416805
Acta Neurochir (Wien). 2017 Nov;159(11):2063-2065
pubmed: 28849287
J Neurol Neurosurg Psychiatry. 2004 Jun;75(6):813-21
pubmed: 15145991
Brain. 1970;93(4):665-78
pubmed: 5490270
Physiol Meas. 2005 Dec;26(6):1039-48
pubmed: 16311451
Neurol Res. 1990 Jun;12(2):67-74
pubmed: 1974702
Trans Med Chir Soc Edinb. 1824;1:84-122
pubmed: 29583621
Neurocrit Care. 2009;10(3):373-86
pubmed: 19127448
J Neurosurg. 2008 Oct;109(4):678-84
pubmed: 18826355
Acta Neurochir (Wien). 2016 Oct;158(10):1997-2009
pubmed: 27567609
Cell Death Differ. 2010 Nov;17(11):1665-71
pubmed: 20706273
Med Eng Phys. 2014 May;36(5):638-45
pubmed: 24703503
J Neurotrauma. 2013 Oct 15;30(20):1737-46
pubmed: 23731257
J Appl Physiol Respir Environ Exerc Physiol. 1982 Dec;53(6):1496-1503
pubmed: 6759493
Neurosurgery. 1997 Jul;41(1):11-7; discussion 17-9
pubmed: 9218290
Fluids Barriers CNS. 2019 Oct 15;16(1):33
pubmed: 31610775
Acta Neurochir (Wien). 2019 Jun;161(6):1217-1227
pubmed: 30877472
Stroke. 2015 Sep;46(9):2464-9
pubmed: 26243224
N Engl J Med. 2012 Dec 27;367(26):2471-81
pubmed: 23234472
Cardiovasc Res. 2006 Apr 1;70(1):12-21
pubmed: 16360130
Anesthesiology. 1995 May;82(5):1309-10
pubmed: 7741317
Med Eng Phys. 2008 Mar;30(2):164-70
pubmed: 17468029
Front Neurol. 2014 Jul 16;5:121
pubmed: 25076934
J Sleep Res. 2021 Aug;30(4):e13214
pubmed: 33155362
Neurocrit Care. 2012 Apr;16(2):258-66
pubmed: 21964774
J Membr Biol. 1995 May;145(1):21-31
pubmed: 7636883
Intensive Care Med. 2020 May;46(5):995-1004
pubmed: 32100061
J Neurosurg. 1982 Apr;56(4):524-8
pubmed: 7062123
J Cereb Blood Flow Metab. 2016 Apr;36(4):665-80
pubmed: 26782760
Acta Neurochir (Wien). 1994;126(2-4):113-9
pubmed: 8042541
J Cereb Blood Flow Metab. 2016 Aug;36(8):1338-50
pubmed: 27174995
Neurocrit Care. 2019 Dec;31(3):546-549
pubmed: 30805845
J Clin Monit Comput. 2023 Aug;37(4):963-976
pubmed: 37119323
Crit Care Med. 2002 Apr;30(4):733-8
pubmed: 11940737
Physiol Meas. 1998 Aug;19(3):305-38
pubmed: 9735883
Cerebrovasc Brain Metab Rev. 1990 Summer;2(2):161-92
pubmed: 2201348
Front Neurol. 2020 Aug 28;11:959
pubmed: 33013638
IEEE Trans Biomed Eng. 2009 Mar;56(3):696-705
pubmed: 19272879
Sci Rep. 2020 Dec 16;10(1):22013
pubmed: 33328490
Neurocrit Care. 2021 Jun;34(3):731-738
pubmed: 33495910
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:546-549
pubmed: 34891352
Acta Neurochir (Wien). 2021 Jul;163(7):1979-1989
pubmed: 33852065
Neurosurgery. 2002 Jul;51(1):170-81; discussion 181-2
pubmed: 12182415
Acta Neuropathol. 2009 Jan;117(1):1-14
pubmed: 19002474
Neurocrit Care. 2021 Jun;34(3):722-730
pubmed: 33846900
Br J Anaesth. 2020 Jan 23;:
pubmed: 31983411