Inhibiting astrocyte connexin-43 hemichannels blocks radiation-induced vesicular VEGF-A release and blood-brain barrier dysfunction.


Journal

Glia
ISSN: 1098-1136
Titre abrégé: Glia
Pays: United States
ID NLM: 8806785

Informations de publication

Date de publication:
01 2024
Historique:
revised: 28 07 2023
received: 06 06 2023
accepted: 09 08 2023
medline: 13 11 2023
pubmed: 6 9 2023
entrez: 6 9 2023
Statut: ppublish

Résumé

Therapeutic brain irradiation with ionizing radiation exerts multiple side effects including barrier leakage that disturbs glial-neuronal functioning and may affect cognition. Astrocytes contribute to barrier leakage by endfeet release of various vasoactive substances acting on capillary endothelial cells forming the barrier. Here, we investigated X-ray effects on astrocytic vesicular transport in mice and determined whether interfering with astrocyte connexins affects radiation-induced barrier leakage. We found that astrocytic VEGF-A-loaded VAMP3 vesicles drastically reorganize starting from 6 h post-irradiation and move in a calcium- and Cx43-dependent manner towards endfeet where VEGF-A is released, provoking barrier leakage. Vesicular transport activation, VEGF-A release and leakage 24 h post-irradiation were all potently inhibited by astrocytic Cx43 KO, Cx43S255/262/279/282A (MK4) mutant mice and TATGap19 inhibition of Cx43 hemichannel opening. Astrocyte VEGF release is a major player in complications of brain irradiation, which can be mitigated by anti-VEGF treatments. Targeting Cx43 hemichannels allows to prevent astrocyte VEGF release at an early stage after brain irradiation.

Identifiants

pubmed: 37670489
doi: 10.1002/glia.24460
doi:

Substances chimiques

Connexin 43 0
Vascular Endothelial Growth Factor A 0
Connexins 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

34-50

Informations de copyright

© 2023 The Authors. GLIA published by Wiley Periodicals LLC.

Références

Alvarez, J. I., Katayama, T., & Prat, A. (2013). Glial influence on the blood brain barrier. Glia, 61(12), 1939-1958.
Argaw, A. T., Asp, L., Zhang, J., Navrazhina, K., Pham, T., Mariani, J. N., Mahase, S., Dutta, D. J., Seto, J., Kramer, E. G., Ferrara, N., Sofroniew, M. V., & John, G. R. (2012). Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease. The Journal of Clinical Investigation, 122(7), 2454-2468.
Argaw, A. T., Gurfein, B. T., Zhang, Y., Zameer, A., & John, G. R. (2009). VEGF-mediated disruption of endothelial CLN-5 promotes blood-brain barrier breakdown. Proceedings of the National Academy of Sciences of the United States of America, 106(6), 1977-1982.
Azzam, E. I., de Toledo, S. M., & Little, J. B. (2001). Direct evidence for the participation of gap junction-mediated intercellular communication in the transmission of damage signals from alpha -particle irradiated to nonirradiated cells. Proceedings of the National Academy of Sciences of the United States of America, 98(2), 473-478.
Azzam, E. I., de Toledo, S. M., & Little, J. B. (2003). Expression of CONNEXIN43 is highly sensitive to ionizing radiation and other environmental stresses. Cancer Research, 63(21), 7128-7135.
Baskar, R., Lee, K. A., Yeo, R., & Yeoh, K. W. (2012). Cancer and radiation therapy: Current advances and future directions. International Journal of Medical Sciences, 9(3), 193-199.
Beardslee, M. A., Laing, J. G., Beyer, E. C., & Saffitz, J. E. (1998). Rapid turnover of connexin43 in the adult rat heart. Circulation Research, 83(6), 629-635.
Bushong, E. A., Martone, M. E., Jones, Y. Z., & Ellisman, M. H. (2002). Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. he Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 22(1), 183-192.
Chiang, C. S., McBride, W. H., & Withers, H. R. (1993). Radiation-induced astrocytic and microglial responses in mouse brain. Radiotherapy and Oncology: Journal of the European Society for Therapeutic Radiology and Oncology, 29(1), 60-68.
De Bock, M., De Smet, M., Verwaerde, S., Tahiri, H., Schumacher, S., Van Haver, V., Witschas, K., Steinhäuser, C., Rouach, N., Vandenbroucke, R. E., & Leybaert, L. (2022). Targeting gliovascular connexins prevents inflammatory blood-brain barrier leakage and astrogliosis. JCI Insight, 7(16), e135263.
De Smet, M. A., Lissoni, A., Nezlobinsky, T., Wang, N., Dries, E., Pérez-Hernández, M., Lin, X., Amoni, M., Vervliet, T., Witschas, K., & Rothenberg, E. (2021). Cx43 hemichannel microdomain signaling at the intercalated disc enhances cardiac excitability. The Journal of Clinical Investigation, 131(7), e137752.
Decrock, E., Hoorelbeke, D., Ramadan, R., Delvaeye, T., De Bock, M., Wang, N., Krysko, D. V., Baatout, S., Bultynck, G., Aerts, A., & Vinken, M. (2017). Calcium, oxidative stress and connexin channels, a harmonious orchestra directing the response to radiotherapy treatment? Biochimica et Biophysica Acta, Molecular Cell Research, 1864(6), 1099-1120.
Dickinson, B. L., Claypool, S. M., D'Angelo, J. A., Aiken, M. L., Venu, N., Yen, E. H., Wagner, J. S., Borawski, J. A., Pierce, A. T., Hershberg, R., Blumberg, R. S., & Lencer, W. I. (2008). Ca2+−dependent calmodulin binding to FcRn affects immunoglobulin G transport in the transcytotic pathway. Molecular Biology of the Cell., 19(1), 414-423.
Dienel, G. A., & Rothman, D. L. (2020). Reevaluation of astrocyte-neuron energy metabolism with astrocyte volume fraction correction: Impact on cellular glucose oxidation rates, glutamate-glutamine cycle energetics, glycogen levels and utilization rates vs. exercising muscle, and Na(+)/K(+) pumping rates. Neurochemical Research, 45(11), 2607-2630.
Fauquette, W., Amourette, C., Dehouck, M. P., & Diserbo, M. (2012). Radiation-induced blood-brain barrier damages: An in vitro study. Brain Research, 1433, 114-126.
Freitas-Andrade, M., Wang, N., Bechberger, J. F., De Bock, M., Lampe, P. D., Leybaert, L., & Naus, C. C. (2019). Targeting MAPK phosphorylation of Connexin43 provides neuroprotection in stroke. The Journal of Experimental Medicine, 216(4), 916-935.
Gaber, M. W., Sabek, O. M., Fukatsu, K., Wilcox, H. G., Kiani, M. F., & Merchant, T. E. (2003). Differences in ICAM-1 and TNF-alpha expression between large single fraction and fractionated irradiation in mouse brain. International Journal of Radiation Biology, 79(5), 359-366.
Giaume, C., Naus, C. C., Sáez, J. C., & Leybaert, L. (2021). Glial connexins and pannexins in the healthy and diseased brain. Physiological Reviews, 101(1), 93-145.
Greene-Schloesser, D., Robbins, M. E., Peiffer, A. M., Shaw, E. G., Wheeler, K. T., & Chan, M. D. (2012). Radiation-induced brain injury: A review. Frontiers in Oncology, 2, 73.
Hagen, B. M., Boyman, L., Kao, J. P., & Lederer, W. J. (2012). A comparative assessment of fluo Ca2+ indicators in rat ventricular myocytes. Cell Calcium, 52(2), 170-181.
Halassa, M. M., Fellin, T., Takano, H., Dong, J. H., & Haydon, P. G. (2007). Synaptic islands defined by the territory of a single astrocyte. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 27(24), 6473-6477.
Hay, J. C. (2007). Calcium: A fundamental regulator of intracellular membrane fusion? EMBO Reports, 8(3), 236-240.
Hoorelbeke, D., Decrock, E., De Smet, M., De Bock, M., Descamps, B., Van Haver, V., Delvaeye, T., Krysko, D. V., Vanhove, C., Bultynck, G., & Leybaert, L. (2020). Cx43 channels and signaling via IP(3)/Ca(2+), ATP, and ROS/NO propagate radiation-induced DNA damage to non-irradiated brain microvascular endothelial cells. Cell Death & Disease, 11(3), 194.
Jin, X., Liang, B., Chen, Z., Liu, X., & Zhang, Z. (2014). The dynamic changes of capillary permeability and upregulation of VEGF in rats following radiation-induced brain injury. Microcirculation (New York, NY: 1994), 21(2), 171-177.
Kang, J., Kang, N., Lovatt, D., Torres, A., Zhao, Z., Lin, J., & Nedergaard, M. (2008). Connexin 43 hemichannels are permeable to ATP. he Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 28(18), 4702-4711.
Lan, G., Wang, P., Chan, R. B., Liu, Z., Yu, Z., Liu, X., Yang, Y., & Zhang, J. (2022). Astrocytic VEGFA: An essential mediator in blood-brain-barrier disruption in Parkinson's disease. Glia, 70(2), 337-353.
Leybaert, L., Lampe, P. D., Dhein, S., Kwak, B. R., Ferdinandy, P., Beyer, E. C., Laird, D. W., Naus, C. C., Green, C. R., & Schulz, R. (2017). Connexins in cardiovascular and neurovascular health and disease: Pharmacological implications. Pharmacological Reviews, 69(4), 396-478.
Lumniczky, K., Szatmari, T., & Safrany, G. (2017). Ionizing radiation-induced immune and inflammatory reactions in the brain. Frontiers in Immunology, 8, 517.
Meunier, C., Wang, N., Yi, C., Dallerac, G., Ezan, P., Koulakoff, A., Leybaert, L., & Giaume, C. (2017). Contribution of Astroglial Cx43 hemichannels to the modulation of glutamatergic currents by D-serine in the mouse prefrontal cortex. he Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 37(37), 9064-9075.
Murakami, T., Felinski, E. A., & Antonetti, D. A. (2009). Occludin phosphorylation and ubiquitination regulate tight junction trafficking and vascular endothelial growth factor-induced permeability. The Journal of Biological Chemistry, 284(31), 21036-21046.
Nolte, C., Matyash, M., Pivneva, T., Schipke, C. G., Ohlemeyer, C., Hanisch, U. K., Kirchhoff, F., & Kettenmann, H. (2001). GFAP promoter-controlled EGFP-expressing transgenic mice: A tool to visualize astrocytes and astrogliosis in living brain tissue. Glia, 33(1), 72-86.
Nordal, R. A., Nagy, A., Pintilie, M., & Wong, C. S. (2004). Hypoxia and hypoxia-inducible factor-1 target genes in central nervous system radiation injury: A role for vascular endothelial growth factor. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 10(10), 3342-3353.
Obermeier, B., Daneman, R., & Ransohoff, R. M. (2013). Development, maintenance and disruption of the blood-brain barrier. Nature Medicine, 19(12), 1584-1596.
Patton, C., Thompson, S., & Epel, D. (2004). Some precautions in using chelators to buffer metals in biological solutions. Cell Calcium, 35(5), 427-431.
Ramadan, R., Vromans, E., Anang, D. C., Decrock, E., Mysara, M., Monsieurs, P., Baatout, S., Leybaert, L., & Aerts, A. (2019). Single and fractionated ionizing radiation induce alterations in endothelial connexin expression and channel function. Scientific Reports, 9(1), 4643.
Ramadan, R., Vromans, E., Anang, D. C., Goetschalckx, I., Hoorelbeke, D., Decrock, E., Baatout, S., Leybaert, L., & Aerts, A. (2020). Connexin43 hemichannel targeting with TAT-Gap19 alleviates radiation-induced endothelial cell damage. Frontiers in Pharmacology, 11, 212.
Salhia, B., Angelov, L., Roncari, L., Wu, X., Shannon, P., & Guha, A. (2000). Expression of vascular endothelial growth factor by reactive astrocytes and associated neoangiogenesis. Brain Research, 883(1), 87-97.
Saoudi, Y., Rousseau, B., Doussière, J., Charrasse, S., Gauthier-Rouvière, C., Morin, N., Sautet-Laugier, C., Denarier, E., Scaïfe, R., Mioskowski, C., & Job, D. (2004). Calcium-independent cytoskeleton disassembly induced by BAPTA. European Journal of Biochemistry, 271(15), 3255-3264.
Savina, A., Fader, C. M., Damiani, M. T., & Colombo, M. I. (2005). Rab11 promotes docking and fusion of multivesicular bodies in a calcium-dependent manner. Traffic (Copenhagen, Denmark), 6(2), 131-143.
Savina, A., Furlán, M., Vidal, M., & Colombo, M. I. (2003). Exosome release is regulated by a calcium-dependent mechanism in K562 cells. The Journal of Biological Chemistry, 278(22), 20083-20090.
Schildge, S., Bohrer, C., Beck, K., & Schachtrup, C. (2013). Isolation and culture of mouse cortical astrocytes. Journal of Visualized Experiments: JoVE, 71, 50079.
Sharma, D. K., Brown, J. C., Choudhury, A., Peterson, T. E., Holicky, E., Marks, D. L., Simari, R., Parton, R. G., & Pagano, R. E. (2004). Selective stimulation of caveolar endocytosis by glycosphingolipids and cholesterol. Molecular Biology of the Cell, 15(7), 3114-3122.
Shaw, R. M., Fay, A. J., Puthenveedu, M. A., von Zastrow, M., Jan, Y. N., & Jan, L. Y. (2007). Microtubule plus-end-tracking proteins target gap junctions directly from the cell interior to adherens junctions. Cell, 128(3), 547-560.
Stamatovic, S. M., Johnson, A. M., Sladojevic, N., Keep, R. F., & Andjelkovic, A. V. (2017). Endocytosis of tight junction proteins and the regulation of degradation and recycling. Annals of the New York Academy of Sciences, 1397(1), 54-65.
Stamatovic, S. M., Keep, R. F., Wang, M. M., Jankovic, I., & Andjelkovic, A. V. (2009). Caveolae-mediated internalization of occludin and claudin-5 during CCL2-induced tight junction remodeling in brain endothelial cells. The Journal of Biological Chemistry, 284(28), 19053-19066.
Stegmayr, C., Oliveira, D., Niemietz, N., Willuweit, A., Lohmann, P., Galldiks, N., Shah, N. J., Ermert, J., & Langen, K. J. (2017). Influence of bevacizumab on blood-brain barrier permeability and O-(2-(18)F-Fluoroethyl)-l-tyrosine uptake in rat gliomas. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 58(5), 700-705.
Stehberg, J., Moraga-Amaro, R., Salazar, C., Becerra, A., Echeverría, C., Orellana, J. A., Bultynck, G., Ponsaerts, R., Leybaert, L., Simon, F., Sáez, J. C., & Retamal, M. A. (2012). Release of gliotransmitters through astroglial connexin 43 hemichannels is necessary for fear memory consolidation in the basolateral amygdala. The FASEB Journal, 26(9), 3649-3657.
Sweeney, M. D., Zhao, Z., Montagne, A., Nelson, A. R., & Zlokovic, B. V. (2019). Blood-brain barrier: From physiology to disease and back. Physiological Reviews, 99(1), 21-78.
Teubner, B., Michel, V., Pesch, J., Lautermann, J., Cohen-Salmon, M., Söhl, G., Jahnke, K., Winterhager, E., Herberhold, C., Hardelin, J. P., Petit, C., & Willecke, K. (2003). Connexin30 (Gjb6)-deficiency causes severe hearing impairment and lack of endocochlear potential. Human Molecular Genetics, 12(1), 13-21.
Theis, M., Jauch, R., Zhuo, L., Speidel, D., Wallraff, A., Doring, B., Frisch, C., Söhl, G., Teubner, B., Euwens, C., & Huston, J. (2003). Accelerated hippocampal spreading depression and enhanced locomotory activity in mice with astrocyte-directed inactivation of connexin43. he Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 23(3), 766-776.
Vaios, E. J., Batich, K. A., Buckley, A. F., Dunn-Pirio, A., Patel, M. P., Kirkpatrick, J. P., Goudar, R., & Peters, K. B. (2022). Resolution of radiation necrosis with bevacizumab following radiation therapy for primary CNS lymphoma. Oncotarget, 13, 576-582.
Wang, N., De Vuyst, E., Ponsaerts, R., Boengler, K., Palacios-Prado, N., Wauman, J., Lai, C. P., De Bock, M., Decrock, E., Bol, M., & Vinken, M. (2013). Selective inhibition of Cx43 hemichannels by Gap19 and its impact on myocardial ischemia/reperfusion injury. Basic Research in Cardiology, 108(1), 309.
Wang, W., Dentler, W. L., & Borchardt, R. T. (2001). VEGF increases BMEC monolayer permeability by affecting occludin expression and tight junction assembly. American Journal of Physiology. Heart and Circulatory Physiology, 280(1), H434-H440.
Wilson, C. M., Gaber, M. W., Sabek, O. M., Zawaski, J. A., & Merchant, T. E. (2009). Radiation-induced astrogliosis and blood-brain barrier damage can be abrogated using anti-TNF treatment. International Journal of Radiation Oncology, Biology, Physics, 74(3), 934-941.
Wu, Q., Fang, Y., Zhang, X., Song, F., Wang, Y., Chen, H., du, J., Zheng, C. B., & Shen, B. (2020). Effect of X-rays on transcript expression of rat brain microvascular endothelial cells: Role of calcium signaling in X-ray-induced endothelium damage. Bioscience Reports, 40(4), BSR20193760.
Xue, R., Chen, M., Cai, J., Deng, Z., Pan, D., Liu, X., Li, Y., Rong, X., Li, H., Xu, Y., Shen, Q., & Tang, Y. (2021). Blood-brain barrier repair of bevacizumab and corticosteroid as prediction of clinical improvement and relapse risk in radiation-induced brain necrosis: A retrospective observational study. Frontiers in Oncology, 11, 720417.
Ye, Z. C., Wyeth, M. S., Baltan-Tekkok, S., & Ransom, B. R. (2003). Functional hemichannels in astrocytes: A novel mechanism of glutamate release. The Journal of Neuroscience, 23(9), 3588-3596.
Yuan, H., Gaber, M. W., Boyd, K., Wilson, C. M., Kiani, M. F., & Merchant, T. E. (2006). Effects of fractionated radiation on the brain vasculature in a murine model: Blood-brain barrier permeability, astrocyte proliferation, and ultrastructural changes. International Journal of Radiation Oncology, Biology, Physics, 66(3), 860-866.
Yuan, H., Gaber, M. W., McColgan, T., Naimark, M. D., Kiani, M. F., & Merchant, T. E. (2003). Radiation-induced permeability and leukocyte adhesion in the rat blood-brain barrier: Modulation with anti-ICAM-1 antibodies. Brain Research, 969(1-2), 59-69.
Yuan, S., Liu, K. J., & Qi, Z. (2020). Occludin regulation of blood-brain barrier and potential therapeutic target in ischemic stroke. Brain Circulation, 6(3), 152-162.
Zhao, C., Wang, H., Xiong, C., & Liu, Y. (2018). Hypoxic glioblastoma release exosomal VEGF-A induce the permeability of blood-brain barrier. Biochemical and Biophysical Research Communications, 502(3), 324-331.
Zhou, D., Huang, X., Xie, Y., Deng, Z., Guo, J., & Huang, H. (2019). Astrocytes-derived VEGF exacerbates the microvascular damage of late delayed RBI. Neuroscience, 408, 14-21.

Auteurs

Steffi Schumacher (S)

Department of Basic and Applied Medical Sciences - Physiology Group, Ghent University, Ghent, Belgium.

Hanane Tahiri (H)

Department of Basic and Applied Medical Sciences - Physiology Group, Ghent University, Ghent, Belgium.

Pascal Ezan (P)

Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Labex Memolife, Paris, France.

Nathalie Rouach (N)

Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Labex Memolife, Paris, France.

Katja Witschas (K)

Department of Basic and Applied Medical Sciences - Physiology Group, Ghent University, Ghent, Belgium.

Luc Leybaert (L)

Department of Basic and Applied Medical Sciences - Physiology Group, Ghent University, Ghent, Belgium.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH