Enhanced efficacy of CD19/CD22 bispecific CAR-T cells with EAAAK linker on B-cell malignancies.

CAR-T cells bispecific antibody immunotherapy

Journal

European journal of haematology
ISSN: 1600-0609
Titre abrégé: Eur J Haematol
Pays: England
ID NLM: 8703985

Informations de publication

Date de publication:
06 Sep 2023
Historique:
revised: 12 08 2023
received: 28 05 2023
accepted: 16 08 2023
medline: 6 9 2023
pubmed: 6 9 2023
entrez: 6 9 2023
Statut: aheadofprint

Résumé

Despite the great success of CD19 CAR-T cell therapy, its clinical efficacy has been greatly hampered by the high relapse rate. In this study, we designed and compared four structures of CD19/CD22 bispecific CAR-T cells with different linkers and different orders of the antibody sequences. We detected the cytotoxicity, cytokine secretion levels, sustainable killing ability, differentiation, exhaustion of these four CAR-T cells in vitro. The optimal Bis-C CAR-T cells were evaluated the efficacy using NSG mice. The two structures of CD19/CD22 bispecific CAR-T cells using (EAAAK)3 as linker had more significant cytotoxicity and cytokine secretion levels. In the process of continuous killing, Bis-C CAR-T cells showed better sustained killing ability, memory phenotype differentiation, and exhaustion. In the in vivo experiment mimicking CD19-negative relapse, Bis-C CAR-T was more able to control the tumor progression of mice in the CD19 low expression or no expression groups than CD19 CAR-T. This study has generated a novel bispecific CAR-T cell that can simultaneously target CD19 or CD22 positive tumor cells, providing a new strategy to address the limitations of single-targeted CAR-T therapy in B-cell tumors (limited response or relapse).

Identifiants

pubmed: 37671595
doi: 10.1111/ejh.14090
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : National Key R&D Program of China
ID : 2022YFC2502700
Organisme : Natural Science Foundation of China
ID : 81872431
Organisme : Priority Academic Program Development of Jiangsu Higher Education Institutions, the Collaborative Innovation Major Project
ID : XYXT-2015304
Organisme : Project of State Key Laboratory of Radiation Medicine and Protection, Soochow University
ID : GNZ1201803

Informations de copyright

© 2023 The Authors. European Journal of Haematology published by John Wiley & Sons Ltd.

Références

Hong M, Clubb JD, Chen YY. Engineering CAR-T cells for next-generation cancer therapy. Cancer Cell. 2020;38(4):473-488.
Turtle CJ, Hanafi LA, Berger C. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J Clin Invest. 2016;126(6):2123-2138.
Locke FL, Ghobadi A, Jacobson CA. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1-2 trial. Lancet Oncol. 2019;20(1):31-42.
Park JH, Rivière I, Gonen M. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med. 2018;378(5):449-459.
Maude SL, Laetsch TW, Buechner J. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378(5):439-448.
Hay KA, Gauthier J, Hirayama AV. Factors associated with durable EFS in adult B-cell ALL patients achieving MRD-negative CR after CD19 CAR T-cell therapy. Blood. 2019;133(15):1652-1663.
Wang J, Hu Y, Huang H. Acute lymphoblastic leukemia relapse after CD19-targeted chimeric antigen receptor T cell therapy. J Leukoc Biol. 2017;102(6):1347-1356.
Orlando EJ, Han X, Tribouley C. Genetic mechanisms of target antigen loss in CAR19 therapy of acute lymphoblastic leukemia. Nat Med. 2018;24(10):1504-1506.
Asnani M, Hayer KE, Naqvi AS. Retention of CD19 intron 2 contributes to CART-19 resistance in leukemias with subclonal frameshift mutations in CD19. Leukemia. 2020;34(4):1202-1207.
Majzner RG, Mackall CL. Tumor antigen escape from CAR T-cell therapy. Cancer Discov. 2018;8(10):1219-1226.
Sotillo E, Barrett DM, Black KL. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov. 2015;5(12):1282-1295.
Spiegel JY, Patel S, Muffly L. CAR T cells with dual targeting of CD19 and CD22 in adult patients with recurrent or refractory B cell malignancies: a phase 1 trial. Nat Med. 2021;27(8):1419-1431.
Dai H, Wu Z, Jia H. Bispecific CAR-T cells targeting both CD19 and CD22 for therapy of adults with relapsed or refractory B cell acute lymphoblastic leukemia. J Hematol Oncol. 2020;13(1):30.
He X, Feng Z, Ma J. Bispecific and split CAR T cells targeting CD13 and TIM3 eradicate acute myeloid leukemia. Blood. 2020;135(10):713-723.
Tong C, Zhang Y, Liu Y. Optimized tandem CD19/CD20 CAR-engineered T cells in refractory/relapsed B-cell lymphoma. Blood. 2020;136(14):1632-1644.
Qu C, Zou R, Wang P, et al. Decitabine-primed tandem CD19/CD22 CAR-T therapy in relapsed/refractory diffuse large B-cell lymphoma patients. Front Immunol. 2022;17(13):969660.
Niu J, Qiu H, Xiang F, et al. CD19/CD22 bispecific CAR-T cells for MRD-positive adult B cell acute lymphoblastic leukemia: a phase I clinical study. Blood Cancer J. 2023;13(1):44.
Mei H, Li C, Jiang H, et al. A bispecific CAR-T cell therapy targeting BCMA and CD38 in relapsed or refractory multiple myeloma. J Hematol Oncol. 2021;14(1):161.
Martino M, Alati C, Canale FA. A review of clinical outcomes of CAR T-cell therapies for B-acute lymphoblastic leukemia. Int J Mol Sci. 2021;22(4):2150.
Köksal H, Dillard P, Josefsson SE. Preclinical development of CD37CAR T-cell therapy for treatment of B-cell lymphoma. Blood Adv. 2019;3(8):1230-1243.
Zhang T, Wang T, You F, et al. Nanobody-based anti-CD22-chimeric antigen receptor T cell immunotherapy exhibits improved remission against B-cell acute lymphoblastic leukemia. Transpl Immunol. 2022;71:101538.
Shah NN, Highfill SL, Shalabi H. CD4/CD8 T-cell selection affects chimeric antigen receptor (CAR) T-cell potency and toxicity: updated results from a phase I anti-CD22 CAR T-cell trial. J Clin Oncol. 2020;38(17):1938-1950.
Arai R. Design of helical linkers for fusion proteins and protein-based nanostructures. Methods Enzymol. 2021;647:209-230.
Sullivan KM, Jiang X, Guha P. Blockade of interleukin 10 potentiates antitumour immune function in human colorectal cancer liver metastases. Gut. 2023;72(2):325-337.
Gökbuget N, Stanze D, Beck J. Outcome of relapsed adult lymphoblastic leukemia depends on response to salvage chemotherapy, prognostic factors, and performance of stem cell transplantation. Blood. 2012;120(10):2032-2041.
Swerdlow SH, Campo E, Pileri SA. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375-2390.
Hamieh M, Dobrin A, Cabriolu A. CAR T cell trogocytosis and cooperative killing regulate tumour antigen escape. Nature. 2019;568(7750):112-116.
Li G, Huang Z, Zhang C, Dong BJ. Construction of a linker library with widely controllable flexibility for fusion protein design. Appl Microbiol Biotechnol. 2016;100(1):215-225.
Meng D, Wang J, You C. The properties of the linker in a mini-scaffoldin influence the catalytic efficiency of scaffoldin-mediated enzyme complexes. Enzyme Microb Technol. 2020;133:109460.
Wilson GL, Fox CH, Fauci AS, Kehrl JH. cDNA cloning of the B cell membrane protein CD22: a mediator of B-B cell interactions. J Exp Med. 1991;173(1):137-146.
Dong R, Libby KA, Blaeschke F, et al. Rewired signaling network in T cells expressing the chimeric antigen receptor (CAR). EMBO J. 2020;39(16):e104730.
Fry TJ, Shah NN, Orentas RJ, et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat Med. 2018;24(1):20-28.
Walker AJ, Majzner RG, Zhang L, et al. Tumor antigen and receptor densities regulate efficacy of a chimeric antigen receptor targeting anaplastic lymphoma kinase. Mol Ther. 2017;25:2189-2201.
Watanabe K, Terakura S, Martens AC, et al. Target antigen density governs the efficacy of anti-CD20-CD28-CD3 zeta chimeric antigen receptor-modified effector CD8+ T cells. J Immunol. 2015;194:911-920.
Caruso HG, Hurton LV, Najjar A, et al. Tuning sensitivity of CAR to EGFR density limits recognition of normal tissue while maintaining potent antitumor activity. Cancer Res. 2015;75:3505-3518.

Auteurs

Renyuxue Ma (R)

Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China.

Fengtao You (F)

PersonGen BioTherapeutics (Suzhou) Co., Ltd., Suzhou, China.

Shuaiyu Tian (S)

Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China.

Tingting Zhang (T)

PersonGen BioTherapeutics (Suzhou) Co., Ltd., Suzhou, China.

Xiaopeng Tian (X)

National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.

Shufen Xiang (S)

PersonGen BioTherapeutics (Suzhou) Co., Ltd., Suzhou, China.

Hai Wu (H)

PersonGen BioTherapeutics (Suzhou) Co., Ltd., Suzhou, China.

Nan Yang (N)

PersonGen BioTherapeutics (Suzhou) Co., Ltd., Suzhou, China.

Gangli An (G)

Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China.

Lin Yang (L)

Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China.

Classifications MeSH