Flexural strength and translucency of barium-silicate-filled resin nanoceramics for additive manufacturing.

additive manufacturing barium silicate flexural strength resin nanoceramics translucency

Journal

Journal of esthetic and restorative dentistry : official publication of the American Academy of Esthetic Dentistry ... [et al.]
ISSN: 1708-8240
Titre abrégé: J Esthet Restor Dent
Pays: England
ID NLM: 101096515

Informations de publication

Date de publication:
06 Sep 2023
Historique:
revised: 20 08 2023
received: 24 07 2023
accepted: 21 08 2023
medline: 6 9 2023
pubmed: 6 9 2023
entrez: 6 9 2023
Statut: aheadofprint

Résumé

This in vitro study aimed to evaluate the flexural strength (FS) and translucency parameter (TP) of resin nanoceramics (RNCs) with barium silicate for additive manufacturing. An RNC slurry was prepared by mixing a barium silicate filler and resin monomer. For the FS tests, specimens with three filler contents (0, 50, and 63 wt%) were designed according to ISO6872 for dental ceramics and ISO10477 for dental polymers. These specimens were then formed into discs with thicknesses of 1 and 2 mm for TP measurement. In the specimens prepared according to ISO6872, the FS increased significantly depending on the filler content. However, in the case of ISO10477, there was no significant difference between the FSs of the specimens with 0 and 50 wt% filler contents. The increase in thickness affected translucency, and the lowest translucency was obtained at a filler content of 63 wt%. The filler distribution was dense in the specimen with 63 wt% filler and uniform but relatively sparse in the specimen with 50 wt% filler. More voids were observed in the specimen with 63 wt% filler. The thickness and filler content of the specimen affected its TP. The TP of the specimen with 63 wt% filler was similar to that of human enamel. The FS was significantly higher at a filler content of 63 wt%. The lowest translucency was obtained at a filler content of 63 wt% for all tested thicknesses. Increasing the filler content was advantageous for the mechanical properties of the RNCs. A high filler content led to low translucency in the RNCs. Therefore, the esthetics of human teeth can be reproduced if layering according to the filler content is performed in areas where esthetic characteristics are required.

Identifiants

pubmed: 37671774
doi: 10.1111/jerd.13129
doi:

Types de publication

Journal Article

Langues

eng

Subventions

Organisme : Gangneung-Wonju National University

Informations de copyright

© 2023 Wiley Periodicals LLC.

Références

Jockusch J, Özcan M. Additive manufacturing of dental polymers: an overview on processes, materials and applications. Dent Mater J. 2020;39:345-354. doi:10.4012/dmj.2019-123
Skjerven H, Riis UH, Herlofsson BB, Ellingsen JE. In vivo accuracy of implant placement using a full digital planning modality and stereolithographic guides. Int J Oral Maxillofac Implants. 2019;34:124-132. doi:10.11607/jomi.6939
Hazeveld A, Slater JJH, Ren Y. Accuracy and reproducibility of dental replica models reconstructed by different rapid prototyping techniques. Am J Orthod Dentofacial Orthop. 2014;145:108-115. doi:10.1016/j.ajodo.2013.05.011
Reyes-Sevilla M, Kuijs R, Werner A, et al. Comparison of wear between occlusal splint materials and resin composite materials. J Oral Rehabil. 2018;45:539-544. doi:10.1111/joor.12636
Wagner SA, Kreyer R. Digitally fabricated removable complete denture clinical workflows using additive manufacturing techniques. J Prosthodont. 2021;30:133-138. doi:10.1111/jopr.13318
Tasaka A, Matsunaga S, Odaka K, et al. Accuracy and retention of denture base fabricated by heat curing and additive manufacturing. J Prosthodont Res. 2019;63:85-89. doi:10.1016/j.jpor.2018.08.007
Baumgartner S, Gmeiner R, Schönherr JA, Stampfl J. Stereolithography-based additive manufacturing of lithium disilicate glass ceramic for dental applications. Mater Sci Eng C Mater Biol Appl. 2020;116:111180. doi:10.1016/j.msec.2020.111180
Branco AC, Silva R, Santos T, et al. Suitability of 3D printed pieces of nanocrystalline zirconia for dental applications. Dent Mater. 2020;36:442-455. doi:10.1016/j.dental.2020.01.006
Dehurtevent M, Robberecht L, Hornez JC, Thuault A, Deveaux E, Béhin P. Stereolithography: a new method for processing dental ceramics by additive computer-aided manufacturing. Dent Mater. 2017;33:477-485. doi:10.1016/j.dental.2017.01.018
Li H, Song L, Sun J, Ma J, Shen Z. Stereolithography-fabricated zirconia dental prostheses: concerns based on clinical requirements. Adv Appl Ceram. 2020;119:236-243. doi:10.1080/17436753.2019.1709687
Goujat A, Abouelleil H, Colon P, et al. Mechanical properties and internal fit of 4 CAD-CAM block materials. J Prosthet Dent. 2018;119:384-389. doi:10.1016/j.prosdent.2017.03.001
Duarte S, Sartori N, Phark JH. Ceramic-reinforced polymers: CAD/CAM hybrid restorative materials. Curr Oral Health Rep. 2016;3:198-202. doi:10.1007/s40496-016-0102-2
Li B, Tian L, Pan L, Li J. Molecular dynamics investigation of structural and mechanical properties of silica nanorod reinforced dental resin composites. J Mech Behav Biomed Mater. 2021;124:104830. doi:10.1016/j.jmbbm.2021.104830
Keßler A, Hickel R, Ilie N. In vitro investigation of the influence of printing direction on the flexural strength, flexural modulus and fractographic analysis of 3D-printed temporary materials. Dent Mater J. 2021;40:641-649. doi:10.4012/dmj.2020-147
Hull CW. Apparatus for production of three-dimensional objects by stereolithography. United States Patent, Appl, No. 638905, Filed 1984. https://pubchem.ncbi.nlm.nih.gov/patent/US-6027324-A
Chen Z, Li Z, Li J, et al. 3D printing of ceramics: a review. J Eur Ceram Soc. 2019;39:661-687. doi:10.1016/j.jeurceramsoc.2018.11.013
Alharbi N, van de Veen AJ, Wismeijer D, Osman RB. Build angle and its influence on the flexure strength of stereolithography printed hybrid resin material. An in vitro study and a fractographic analysis. Mater Technol. 2019;34:12-17. doi:10.1080/10667857.2018.1467071
Väyrynen VO, Tanner J, Vallittu PK. The anisotropicity of the flexural properties of an occlusal device material processed by stereolithography. J Prosthet Dent. 2016;116:811-817. doi:10.1016/j.prosdent.2016.03.018
Simoneti DM, Pereira-Cenci T, Dos Santos MBF. Comparison of material properties and biofilm formation in interim single crowns obtained by 3D printing and conventional methods. J Prosthet Dent. 2022;127:168-172. doi:10.1016/j.prosdent.2020.06.026
Zhou S, Mei H, Chang P, Lu M, Cheng L. Molecule editable 3D printed polymer-derived ceramics. Coord Chem Rev. 2020;422:213486. doi:10.1016/j.ccr.2020.213486
Chowdhury FI. Sustainable resin systems for polymer composites. Advances in Sustainable Polymer Composites. Elsevier; 2021:89-108. doi:10.1016/B978-0-12-820338-5.00004-7
Seo KT, Kim OY. Dental properties of polymer composite filled with barium silicate hybridized with hydroxyapatite. Polymer (Korea). 2007;31:141-147. https://koreascience.kr/article/JAKO200714539106306.page
Campos LMP, Boaro LC, Santos TM, et al. Evaluation of flexural modulus, flexural strength and degree of conversion in BISGMA/TEGDMA resin filled with montmorillonite nanoparticles. J Compos Mater. 2017;51:927-937. doi:10.1177/0021998316656925
Yao L, Hu P, Zhao Y, et al. Handcrafted digital light processing apparatus for additively manufacturing oral-prosthesis targeted nano-ceramic resin composites. Sci Eng Compos. 2021;28:315-326. doi:10.1515/secm-2021-0031
Aoyagi Y, Takahashi H, Iwasaki N, et al. Radiopacity of experimental composite resins containing radiopaque materials. Dent Mater J. 2005;24:315-320. doi:10.4012/dmj.24.315
McArthur DR, Taylor DF. A determination of the minimum radiopacification necessary for radiographic detection of an aspirated or swallowed object. Oral Surg Oral Med Oral Pathol. 1975;39:329-338. doi:10.1016/0030-4220(75)90236-4
Espelid I, Tveit AB, Erickson RL, Keck SC, Glasspoole EA. Radiopacity of restorations and detection of secondary caries. Dent Mater. 1991;7:114-117. doi:10.1016/0109-5641(91)90056-5
ISO 10477. Dentistry-Polymer-Based Crown and Veneering Materials. 4th ed. International Organization for Standardization; 2020.
ISO 6872. Dentistry-Ceramic Materials. 4th ed. International Organization for Standardization; 2015.
Palanisamy C, Raman R, Dhanraj PK. Additive manufacturing: a review on mechanical properties of polyjet and FDM printed parts. Polym Bull. 2022;79:7065-7116. doi:10.1007/s00289-021-03899-0
Vichi A, Sedda M, Fabian Fonzar R, Carrabba M, Ferrari M. Comparison of contrast ratio, translucency parameter, and flexural strength of traditional and “augmented translucency” zirconia for CEREC CAD/CAM system. J Esthet Restor Dent. 2016;28:S32-S39. doi:10.1111/jerd.12172
Brodbelt R, O'brien W, Fan P. Translucency of dental porcelains. J Dent Res. 1980;59:70-75. doi:10.1177/00220345800590011101
Clarke FJ. Measurement of color of human teeth. Proceedings of the First International Symposium on Ceramics: Quintessence. 441-490. 1983.
Awada A, Nathanson D. Mechanical properties of resin-ceramic CAD/CAM restorative materials. J Prosthet Dent. 2015;114:587-593. doi:10.1016/j.prosdent.2015.04.016
Chen C, Trindade FZ, de Jager N, Kleverlaan CJ, Feilzer AJ. The fracture resistance of a CAD/CAM resin nano ceramic (RNC) and a CAD ceramic at different thicknesses. Dent Mater. 2014;30:954-962. doi:10.1016/j.dental.2014.05.018
Magne P, Carvalho AO, Bruzi G, Giannini M. Fatigue resistance of ultrathin CAD/CAM complete crowns with a simplified cementation process. J Prosthet Dent. 2015;114:574-579. doi:10.1016/j.prosdent.2015.04.014
Kim JH, Ko KH, Huh YH, et al. Effects of the thickness ratio of zirconia-lithium disilicate bilayered ceramics on the translucency and flexural strength. J Prosthodont. 2020;29:334-340. doi:10.1111/jopr.13136
Church TD, Jessup JP, Guillory VL, Vandewalle KS. Translucency and strength of high-translucency monolithic zirconium oxide materials. Gen Dent. 2017;65:48-52.
Lee YK. Criteria for clinical translucency evaluation of direct esthetic restorative materials. Restor Dent Endod. 2016;41:159-166. doi:10.5395/rde.2016.41.3.159
Awad D, Stawarczyk B, Liebermann A, Ilie N. Translucency of esthetic dental restorative CAD/CAM materials and composite resins with respect to thickness and surface roughness. J Prosthet Dent. 2015;113:534-540. doi:10.1016/j.prosdent.2014.12.003

Auteurs

Geun-Taek Park (GT)

Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangneung, Republic of Korea.

Kyung-Ho Ko (KH)

Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangneung, Republic of Korea.

Yoon-Hyuk Huh (YH)

Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangneung, Republic of Korea.

Chan-Jin Park (CJ)

Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangneung, Republic of Korea.

Lee-Ra Cho (LR)

Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangneung, Republic of Korea.

Classifications MeSH