Impact of signal intensity normalization of MRI on the generalizability of radiomic-based prediction of molecular glioma subtypes.
Genotype
Glioma
Isocitrate dehydrogenase
Magnetic resonance imaging
Journal
European radiology
ISSN: 1432-1084
Titre abrégé: Eur Radiol
Pays: Germany
ID NLM: 9114774
Informations de publication
Date de publication:
Apr 2024
Apr 2024
Historique:
received:
07
03
2023
accepted:
16
06
2023
revised:
09
05
2023
pubmed:
6
9
2023
medline:
6
9
2023
entrez:
6
9
2023
Statut:
ppublish
Résumé
Radiomic features have demonstrated encouraging results for non-invasive detection of molecular biomarkers, but the lack of guidelines for pre-processing MRI-data has led to poor generalizability. Here, we assessed the influence of different MRI-intensity normalization techniques on the performance of radiomics-based models for predicting molecular glioma subtypes. Preoperative MRI-data from n = 615 patients with newly diagnosed glioma and known isocitrate dehydrogenase (IDH) and 1p/19q status were pre-processed using four different methods: no normalization (naive), N4 bias field correction (N4), N4 followed by either WhiteStripe (N4/WS), or z-score normalization (N4/z-score). A total of 377 Image-Biomarker-Standardisation-Initiative-compliant radiomic features were extracted from each normalized data, and 9 different machine-learning algorithms were trained for multiclass prediction of molecular glioma subtypes (IDH-mutant 1p/19q codeleted vs. IDH-mutant 1p/19q non-codeleted vs. IDH wild type). External testing was performed in public glioma datasets from UCSF (n = 410) and TCGA (n = 160). Support vector machine yielded the best performance with macro-average AUCs of 0.84 (naive), 0.84 (N4), 0.87 (N4/WS), and 0.87 (N4/z-score) in the internal test set. Both N4/WS and z-score outperformed the other approaches in the external UCSF and TCGA test sets with macro-average AUCs ranging from 0.85 to 0.87, replicating the performance of the internal test set, in contrast to macro-average AUCs ranging from 0.19 to 0.45 for naive and 0.26 to 0.52 for N4 alone. Intensity normalization of MRI data is essential for the generalizability of radiomic-based machine-learning models. Specifically, both N4/WS and N4/z-score approaches allow to preserve the high model performance, yielding generalizable performance when applying the developed radiomic-based machine-learning model in an external heterogeneous, multi-institutional setting. Intensity normalization such as N4/WS or N4/z-score can be used to develop reliable radiomics-based machine learning models from heterogeneous multicentre MRI datasets and provide non-invasive prediction of glioma subtypes. • MRI-intensity normalization increases the stability of radiomics-based models and leads to better generalizability. • Intensity normalization did not appear relevant when the developed model was applied to homogeneous data from the same institution. • Radiomic-based machine learning algorithms are a promising approach for simultaneous classification of IDH and 1p/19q status of glioma.
Identifiants
pubmed: 37672053
doi: 10.1007/s00330-023-10034-2
pii: 10.1007/s00330-023-10034-2
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2782-2790Informations de copyright
© 2023. The Author(s).
Références
Ostrom QT, Gittleman H, Liao P et al (2017) CBTRUS Statistical Report: Primary brain and other central nervous system tumors diagnosed in the United States in 2010–2014. Neuro Oncol 19:v1–v88
doi: 10.1093/neuonc/nox158
pubmed: 29117289
pmcid: 5693142
Louis DN, Perry A, Wesseling P et al (2021) The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol 23:1231–1251
doi: 10.1093/neuonc/noab106
pubmed: 34185076
pmcid: 8328013
Foltyn M, Nieto Taborda KN, Neuberger U et al (2020) T2/FLAIR-mismatch sign for noninvasive detection of IDH-mutant 1p/19q non-codeleted gliomas: validity and pathophysiology. Neurooncol Adv 2:vdaa004
Cindil E, Sendur HN, Cerit MN et al (2022) Prediction of IDH mutation status in high-grade gliomas using DWI and high T1-weight DSC-MRI. Acad Radiol 29(Suppl 3):S52–S62
doi: 10.1016/j.acra.2021.02.002
pubmed: 33685792
Leu K, Ott GA, Lai A et al (2017) Perfusion and diffusion MRI signatures in histologic and genetic subtypes of WHO grade II-III diffuse gliomas. J Neurooncol 134:177–188
doi: 10.1007/s11060-017-2506-9
pubmed: 28547590
pmcid: 7927357
Bhandari AP, Liong R, Koppen J, Murthy SV, Lasocki A (2021) Noninvasive determination of IDH and 1p19q status of lower-grade gliomas using MRI radiomics: a systematic review. AJNR Am J Neuroradiol 42:94–101
doi: 10.3174/ajnr.A6875
pubmed: 33243896
pmcid: 7814803
Cluceru J, Interian Y, Phillips JJ et al (2022) Improving the noninvasive classification of glioma genetic subtype with deep learning and diffusion-weighted imaging. Neuro Oncol 24:639–652
doi: 10.1093/neuonc/noab238
pubmed: 34653254
Lu CF, Hsu FT, Hsieh KL et al (2018) Machine learning-based radiomics for molecular subtyping of gliomas. Clin Cancer Res 24:4429–4436
doi: 10.1158/1078-0432.CCR-17-3445
pubmed: 29789422
van Griethuysen JJM, Fedorov A, Parmar C et al (2017) Computational radiomics system to decode the radiographic phenotype. Cancer Res 77:e104–e107
doi: 10.1158/0008-5472.CAN-17-0339
pubmed: 29092951
pmcid: 5672828
Zhou H, Vallieres M, Bai HX et al (2017) MRI features predict survival and molecular markers in diffuse lower-grade gliomas. Neuro Oncol 19:862–870
doi: 10.1093/neuonc/now256
pubmed: 28339588
pmcid: 5464433
Park JE, Kim D, Kim HS et al (2020) Quality of science and reporting of radiomics in oncologic studies: room for improvement according to radiomics quality score and TRIPOD statement. Eur Radiol 30:523–536
doi: 10.1007/s00330-019-06360-z
pubmed: 31350588
Park JE, Kim HS, Kim D et al (2020) A systematic review reporting quality of radiomics research in neuro-oncology: toward clinical utility and quality improvement using high-dimensional imaging features. BMC Cancer 20:29
doi: 10.1186/s12885-019-6504-5
pubmed: 31924170
pmcid: 6954557
Collewet G, Strzelecki M, Mariette F (2004) Influence of MRI acquisition protocols and image intensity normalization methods on texture classification. Magn Reson Imaging 22:81–91
doi: 10.1016/j.mri.2003.09.001
pubmed: 14972397
Moradmand H, Aghamiri SMR, Ghaderi R (2020) Impact of image preprocessing methods on reproducibility of radiomic features in multimodal magnetic resonance imaging in glioblastoma. J Appl Clin Med Phys 21:179–190
doi: 10.1002/acm2.12795
pubmed: 31880401
Zinn PO, Singh SK, Kotrotsou A et al (2018) A coclinical radiogenomic validation study: conserved magnetic resonance radiomic appearance of periostin-expressing glioblastoma in patients and xenograft models. Clin Cancer Res 24:6288–6299
doi: 10.1158/1078-0432.CCR-17-3420
pubmed: 30054278
pmcid: 6538261
Zwanenburg A, Vallieres M, Abdalah MA et al (2020) The Image Biomarker Standardization Initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 295:328–338
doi: 10.1148/radiol.2020191145
pubmed: 32154773
Fatania K, Mohamud F, Clark A et al (2022) Intensity standardization of MRI prior to radiomic feature extraction for artificial intelligence research in glioma-a systematic review. Eur Radiol. https://doi.org/10.1007/s00330-022-08807-2
doi: 10.1007/s00330-022-08807-2
pubmed: 35486171
pmcid: 9474349
Capper D, Jones DTW, Sill M et al (2018) DNA methylation-based classification of central nervous system tumours. Nature 555:469–474
doi: 10.1038/nature26000
pubmed: 29539639
pmcid: 6093218
Ellingson BM, Bendszus M, Boxerman J et al (2015) Consensus recommendations for a standardized Brain Tumor Imaging Protocol in clinical trials. Neuro Oncol 17:1188–1198
pubmed: 26250565
pmcid: 4588759
Calabrese E, Villanueva-Meyer JE, Rudie JD et al (2022) The University of California San Francisco preoperative diffuse glioma MRI dataset. Radiol Artif Intell 4:e220058
Clark K, Vendt B, Smith K et al (2013) The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J Digit Imaging 26:1045–1057
doi: 10.1007/s10278-013-9622-7
pubmed: 23884657
pmcid: 3824915
Kickingereder P, Isensee F, Tursunova I et al (2019) Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre, retrospective study. Lancet Oncol 20:728–740
doi: 10.1016/S1470-2045(19)30098-1
pubmed: 30952559
Jayachandran Preetha C, Meredig H, Brugnara G et al (2021) Deep-learning-based synthesis of post-contrast T1-weighted MRI for tumour response assessment in neuro-oncology: a multicentre, retrospective cohort study. Lancet Digit Health 3:e784–e794
doi: 10.1016/S2589-7500(21)00205-3
pubmed: 34688602
Isensee F, Schell M, Pflueger I et al (2019) Automated brain extraction of multisequence MRI using artificial neural networks. Hum Brain Mapp 40:4952–4964
doi: 10.1002/hbm.24750
pubmed: 31403237
pmcid: 6865732
Stamoulou E, Spanakis C, Manikis GC et al (2022) Harmonization strategies in multicenter MRI-based radiomics. J Imaging 8(11):303
Elssied NOF, Ibrahim O, Osman AH (2014) A novel feature selection based on one-way ANOVA F-test for E-mail spam classification. Res J Appl Sci Eng Technol 7:625–638
doi: 10.19026/rjaset.7.299
Fatania K, Mohamud F, Clark A et al (2022) Intensity standardization of MRI prior to radiomic feature extraction for artificial intelligence research in glioma-a systematic review. Eur Radiol 32:7014–7025
doi: 10.1007/s00330-022-08807-2
pubmed: 35486171
pmcid: 9474349
van der Voort SR, Incekara F, Wijnenga MMJ et al (2019) Predicting the 1p/19q codeletion status of presumed low-grade glioma with an externally validated machine learning algorithm. Clin Cancer Res 25:7455–7462
doi: 10.1158/1078-0432.CCR-19-1127
pubmed: 31548344
Zhang L, Min Z, Tang M, Chen S, Lei X, Zhang X (2017) The utility of diffusion MRI with quantitative ADC measurements for differentiating high-grade from low-grade cerebral gliomas: evidence from a meta-analysis. J Neurol Sci 373:9–15
doi: 10.1016/j.jns.2016.12.008
pubmed: 28131237
Kim M, Jung SY, Park JE et al (2020) Diffusion- and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade glioma. Eur Radiol 30:2142–2151
doi: 10.1007/s00330-019-06548-3
pubmed: 31828414
DeSilvio T, Moroianu S, Bhattacharya I, Seetharaman A, Sonn G, Rusu M (2021) Intensity normalization of prostate MRIs using conditional generative adversarial networks for cancer detection. In: Mazurowski MA, Drukker K, (eds) Medical Imaging 2021: Computer-Aided Diagnosis, pp 115970J
Hoebel KV, Patel JB, Beers AL et al (2021) Radiomics repeatability pitfalls in a scan-rescan MRI study of glioblastoma. Radiol Artif Intell 3:e190199
doi: 10.1148/ryai.2020190199
pubmed: 33842889
Tustison NJ, Avants BB, Cook PA et al (2010) N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 29:1310–1320
doi: 10.1109/TMI.2010.2046908
pubmed: 20378467
pmcid: 3071855
Shinohara RT, Sweeney EM, Goldsmith J et al (2014) Statistical normalization techniques for magnetic resonance imaging. Neuroimage Clin 6:9–19
doi: 10.1016/j.nicl.2014.08.008
pubmed: 25379412
pmcid: 4215426
Chaddad A, Kucharczyk MJ, Daniel P et al (2019) Radiomics in glioblastoma: current status and challenges facing clinical implementation. Front Oncol 9:374
doi: 10.3389/fonc.2019.00374
pubmed: 31165039
pmcid: 6536622