Impact of signal intensity normalization of MRI on the generalizability of radiomic-based prediction of molecular glioma subtypes.

Genotype Glioma Isocitrate dehydrogenase Magnetic resonance imaging

Journal

European radiology
ISSN: 1432-1084
Titre abrégé: Eur Radiol
Pays: Germany
ID NLM: 9114774

Informations de publication

Date de publication:
Apr 2024
Historique:
received: 07 03 2023
accepted: 16 06 2023
revised: 09 05 2023
pubmed: 6 9 2023
medline: 6 9 2023
entrez: 6 9 2023
Statut: ppublish

Résumé

Radiomic features have demonstrated encouraging results for non-invasive detection of molecular biomarkers, but the lack of guidelines for pre-processing MRI-data has led to poor generalizability. Here, we assessed the influence of different MRI-intensity normalization techniques on the performance of radiomics-based models for predicting molecular glioma subtypes. Preoperative MRI-data from n = 615 patients with newly diagnosed glioma and known isocitrate dehydrogenase (IDH) and 1p/19q status were pre-processed using four different methods: no normalization (naive), N4 bias field correction (N4), N4 followed by either WhiteStripe (N4/WS), or z-score normalization (N4/z-score). A total of 377 Image-Biomarker-Standardisation-Initiative-compliant radiomic features were extracted from each normalized data, and 9 different machine-learning algorithms were trained for multiclass prediction of molecular glioma subtypes (IDH-mutant 1p/19q codeleted vs. IDH-mutant 1p/19q non-codeleted vs. IDH wild type). External testing was performed in public glioma datasets from UCSF (n = 410) and TCGA (n = 160). Support vector machine yielded the best performance with macro-average AUCs of 0.84 (naive), 0.84 (N4), 0.87 (N4/WS), and 0.87 (N4/z-score) in the internal test set. Both N4/WS and z-score outperformed the other approaches in the external UCSF and TCGA test sets with macro-average AUCs ranging from 0.85 to 0.87, replicating the performance of the internal test set, in contrast to macro-average AUCs ranging from 0.19 to 0.45 for naive and 0.26 to 0.52 for N4 alone. Intensity normalization of MRI data is essential for the generalizability of radiomic-based machine-learning models. Specifically, both N4/WS and N4/z-score approaches allow to preserve the high model performance, yielding generalizable performance when applying the developed radiomic-based machine-learning model in an external heterogeneous, multi-institutional setting. Intensity normalization such as N4/WS or N4/z-score can be used to develop reliable radiomics-based machine learning models from heterogeneous multicentre MRI datasets and provide non-invasive prediction of glioma subtypes. • MRI-intensity normalization increases the stability of radiomics-based models and leads to better generalizability. • Intensity normalization did not appear relevant when the developed model was applied to homogeneous data from the same institution. • Radiomic-based machine learning algorithms are a promising approach for simultaneous classification of IDH and 1p/19q status of glioma.

Identifiants

pubmed: 37672053
doi: 10.1007/s00330-023-10034-2
pii: 10.1007/s00330-023-10034-2
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2782-2790

Informations de copyright

© 2023. The Author(s).

Références

Ostrom QT, Gittleman H, Liao P et al (2017) CBTRUS Statistical Report: Primary brain and other central nervous system tumors diagnosed in the United States in 2010–2014. Neuro Oncol 19:v1–v88
doi: 10.1093/neuonc/nox158 pubmed: 29117289 pmcid: 5693142
Louis DN, Perry A, Wesseling P et al (2021) The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol 23:1231–1251
doi: 10.1093/neuonc/noab106 pubmed: 34185076 pmcid: 8328013
Foltyn M, Nieto Taborda KN, Neuberger U et al (2020) T2/FLAIR-mismatch sign for noninvasive detection of IDH-mutant 1p/19q non-codeleted gliomas: validity and pathophysiology. Neurooncol Adv 2:vdaa004
Cindil E, Sendur HN, Cerit MN et al (2022) Prediction of IDH mutation status in high-grade gliomas using DWI and high T1-weight DSC-MRI. Acad Radiol 29(Suppl 3):S52–S62
doi: 10.1016/j.acra.2021.02.002 pubmed: 33685792
Leu K, Ott GA, Lai A et al (2017) Perfusion and diffusion MRI signatures in histologic and genetic subtypes of WHO grade II-III diffuse gliomas. J Neurooncol 134:177–188
doi: 10.1007/s11060-017-2506-9 pubmed: 28547590 pmcid: 7927357
Bhandari AP, Liong R, Koppen J, Murthy SV, Lasocki A (2021) Noninvasive determination of IDH and 1p19q status of lower-grade gliomas using MRI radiomics: a systematic review. AJNR Am J Neuroradiol 42:94–101
doi: 10.3174/ajnr.A6875 pubmed: 33243896 pmcid: 7814803
Cluceru J, Interian Y, Phillips JJ et al (2022) Improving the noninvasive classification of glioma genetic subtype with deep learning and diffusion-weighted imaging. Neuro Oncol 24:639–652
doi: 10.1093/neuonc/noab238 pubmed: 34653254
Lu CF, Hsu FT, Hsieh KL et al (2018) Machine learning-based radiomics for molecular subtyping of gliomas. Clin Cancer Res 24:4429–4436
doi: 10.1158/1078-0432.CCR-17-3445 pubmed: 29789422
van Griethuysen JJM, Fedorov A, Parmar C et al (2017) Computational radiomics system to decode the radiographic phenotype. Cancer Res 77:e104–e107
doi: 10.1158/0008-5472.CAN-17-0339 pubmed: 29092951 pmcid: 5672828
Zhou H, Vallieres M, Bai HX et al (2017) MRI features predict survival and molecular markers in diffuse lower-grade gliomas. Neuro Oncol 19:862–870
doi: 10.1093/neuonc/now256 pubmed: 28339588 pmcid: 5464433
Park JE, Kim D, Kim HS et al (2020) Quality of science and reporting of radiomics in oncologic studies: room for improvement according to radiomics quality score and TRIPOD statement. Eur Radiol 30:523–536
doi: 10.1007/s00330-019-06360-z pubmed: 31350588
Park JE, Kim HS, Kim D et al (2020) A systematic review reporting quality of radiomics research in neuro-oncology: toward clinical utility and quality improvement using high-dimensional imaging features. BMC Cancer 20:29
doi: 10.1186/s12885-019-6504-5 pubmed: 31924170 pmcid: 6954557
Collewet G, Strzelecki M, Mariette F (2004) Influence of MRI acquisition protocols and image intensity normalization methods on texture classification. Magn Reson Imaging 22:81–91
doi: 10.1016/j.mri.2003.09.001 pubmed: 14972397
Moradmand H, Aghamiri SMR, Ghaderi R (2020) Impact of image preprocessing methods on reproducibility of radiomic features in multimodal magnetic resonance imaging in glioblastoma. J Appl Clin Med Phys 21:179–190
doi: 10.1002/acm2.12795 pubmed: 31880401
Zinn PO, Singh SK, Kotrotsou A et al (2018) A coclinical radiogenomic validation study: conserved magnetic resonance radiomic appearance of periostin-expressing glioblastoma in patients and xenograft models. Clin Cancer Res 24:6288–6299
doi: 10.1158/1078-0432.CCR-17-3420 pubmed: 30054278 pmcid: 6538261
Zwanenburg A, Vallieres M, Abdalah MA et al (2020) The Image Biomarker Standardization Initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 295:328–338
doi: 10.1148/radiol.2020191145 pubmed: 32154773
Fatania K, Mohamud F, Clark A et al (2022) Intensity standardization of MRI prior to radiomic feature extraction for artificial intelligence research in glioma-a systematic review. Eur Radiol. https://doi.org/10.1007/s00330-022-08807-2
doi: 10.1007/s00330-022-08807-2 pubmed: 35486171 pmcid: 9474349
Capper D, Jones DTW, Sill M et al (2018) DNA methylation-based classification of central nervous system tumours. Nature 555:469–474
doi: 10.1038/nature26000 pubmed: 29539639 pmcid: 6093218
Ellingson BM, Bendszus M, Boxerman J et al (2015) Consensus recommendations for a standardized Brain Tumor Imaging Protocol in clinical trials. Neuro Oncol 17:1188–1198
pubmed: 26250565 pmcid: 4588759
Calabrese E, Villanueva-Meyer JE, Rudie JD et al (2022) The University of California San Francisco preoperative diffuse glioma MRI dataset. Radiol Artif Intell 4:e220058
Clark K, Vendt B, Smith K et al (2013) The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J Digit Imaging 26:1045–1057
doi: 10.1007/s10278-013-9622-7 pubmed: 23884657 pmcid: 3824915
Kickingereder P, Isensee F, Tursunova I et al (2019) Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre, retrospective study. Lancet Oncol 20:728–740
doi: 10.1016/S1470-2045(19)30098-1 pubmed: 30952559
Jayachandran Preetha C, Meredig H, Brugnara G et al (2021) Deep-learning-based synthesis of post-contrast T1-weighted MRI for tumour response assessment in neuro-oncology: a multicentre, retrospective cohort study. Lancet Digit Health 3:e784–e794
doi: 10.1016/S2589-7500(21)00205-3 pubmed: 34688602
Isensee F, Schell M, Pflueger I et al (2019) Automated brain extraction of multisequence MRI using artificial neural networks. Hum Brain Mapp 40:4952–4964
doi: 10.1002/hbm.24750 pubmed: 31403237 pmcid: 6865732
Stamoulou E, Spanakis C, Manikis GC et al (2022) Harmonization strategies in multicenter MRI-based radiomics. J Imaging 8(11):303
Elssied NOF, Ibrahim O, Osman AH (2014) A novel feature selection based on one-way ANOVA F-test for E-mail spam classification. Res J Appl Sci Eng Technol 7:625–638
doi: 10.19026/rjaset.7.299
Fatania K, Mohamud F, Clark A et al (2022) Intensity standardization of MRI prior to radiomic feature extraction for artificial intelligence research in glioma-a systematic review. Eur Radiol 32:7014–7025
doi: 10.1007/s00330-022-08807-2 pubmed: 35486171 pmcid: 9474349
van der Voort SR, Incekara F, Wijnenga MMJ et al (2019) Predicting the 1p/19q codeletion status of presumed low-grade glioma with an externally validated machine learning algorithm. Clin Cancer Res 25:7455–7462
doi: 10.1158/1078-0432.CCR-19-1127 pubmed: 31548344
Zhang L, Min Z, Tang M, Chen S, Lei X, Zhang X (2017) The utility of diffusion MRI with quantitative ADC measurements for differentiating high-grade from low-grade cerebral gliomas: evidence from a meta-analysis. J Neurol Sci 373:9–15
doi: 10.1016/j.jns.2016.12.008 pubmed: 28131237
Kim M, Jung SY, Park JE et al (2020) Diffusion- and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade glioma. Eur Radiol 30:2142–2151
doi: 10.1007/s00330-019-06548-3 pubmed: 31828414
DeSilvio T, Moroianu S, Bhattacharya I, Seetharaman A, Sonn G, Rusu M (2021) Intensity normalization of prostate MRIs using conditional generative adversarial networks for cancer detection. In: Mazurowski MA, Drukker K, (eds) Medical Imaging 2021: Computer-Aided Diagnosis, pp 115970J
Hoebel KV, Patel JB, Beers AL et al (2021) Radiomics repeatability pitfalls in a scan-rescan MRI study of glioblastoma. Radiol Artif Intell 3:e190199
doi: 10.1148/ryai.2020190199 pubmed: 33842889
Tustison NJ, Avants BB, Cook PA et al (2010) N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 29:1310–1320
doi: 10.1109/TMI.2010.2046908 pubmed: 20378467 pmcid: 3071855
Shinohara RT, Sweeney EM, Goldsmith J et al (2014) Statistical normalization techniques for magnetic resonance imaging. Neuroimage Clin 6:9–19
doi: 10.1016/j.nicl.2014.08.008 pubmed: 25379412 pmcid: 4215426
Chaddad A, Kucharczyk MJ, Daniel P et al (2019) Radiomics in glioblastoma: current status and challenges facing clinical implementation. Front Oncol 9:374
doi: 10.3389/fonc.2019.00374 pubmed: 31165039 pmcid: 6536622

Auteurs

Martha Foltyn-Dumitru (M)

Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, DE, Germany.
Section for Computational Neuroimaging, Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, DE, Germany.

Marianne Schell (M)

Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, DE, Germany.
Section for Computational Neuroimaging, Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, DE, Germany.

Aditya Rastogi (A)

Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, DE, Germany.
Section for Computational Neuroimaging, Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, DE, Germany.

Felix Sahm (F)

Department of Neuropathology, Heidelberg University Hospital, Heidelberg, DE, Germany.

Tobias Kessler (T)

Department of Neurology, Heidelberg University Hospital, Heidelberg, DE, Germany.

Wolfgang Wick (W)

Department of Neurology, Heidelberg University Hospital, Heidelberg, DE, Germany.
Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, DE, Germany.

Martin Bendszus (M)

Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, DE, Germany.

Gianluca Brugnara (G)

Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, DE, Germany.
Section for Computational Neuroimaging, Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, DE, Germany.

Philipp Vollmuth (P)

Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, DE, Germany. Philipp.Vollmuth@med.uni-heidelberg.de.
Section for Computational Neuroimaging, Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, DE, Germany. Philipp.Vollmuth@med.uni-heidelberg.de.
Division of Medical Image Computing (MIC), German Cancer Research Center (DFKZ), Heidelberg, Germany. Philipp.Vollmuth@med.uni-heidelberg.de.

Classifications MeSH