A new spike-in-based method for quantitative metabarcoding of soil fungi and bacteria.
Compositional data
Internal standards
Metabarcoding
Soil microbiology
Spike-in
Journal
International microbiology : the official journal of the Spanish Society for Microbiology
ISSN: 1618-1905
Titre abrégé: Int Microbiol
Pays: Switzerland
ID NLM: 9816585
Informations de publication
Date de publication:
06 Sep 2023
06 Sep 2023
Historique:
received:
08
05
2023
accepted:
23
08
2023
revised:
17
08
2023
medline:
6
9
2023
pubmed:
6
9
2023
entrez:
6
9
2023
Statut:
aheadofprint
Résumé
Metabarcoding is a powerful tool to characterize biodiversity in biological samples. The interpretation of taxonomic profiles from metabarcoding data has been hindered by their compositional nature. Several strategies have been proposed to transform compositional data into quantitative data, but they have intrinsic limitations. Here, I propose a workflow based on bacterial and fungal cellular internal standards (spike-ins) for absolute quantification of the microbiota in soil samples. These standards were added to the samples before DNA extraction in amounts estimated after qPCRs, to target around 1-2% coverage in the sequencing run. In bacteria, proportions of spike-in reads in the sequencing run were very similar (< 2-fold change) to those predicted by the qPCR assessment, and for fungi they differed up to 40-fold. The low variation among replicates highlights the reproducibility of the method. Estimates based on multiple bacterial spike-ins were highly correlated (r = 0.99). Procrustes analysis evidenced significant biological effects on the community composition when normalizing compositional data. A protocol based on qPCR estimation of input amounts of cellular spikes is proposed as a cheap and reliable strategy for quantitative metabarcoding of biological samples.
Identifiants
pubmed: 37672116
doi: 10.1007/s10123-023-00422-5
pii: 10.1007/s10123-023-00422-5
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
Références
Bengtsson-Palme J, Ryberg M, Hartmann M, Branco S, Wang Z, Godhe A, De Wit P, Sánchez-García M, Ebersberger I, de Sousa F et al (2013) Improved software detection and extraction of ITS1 and ITS2 from ribosomal its sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol Evol 4:914–919
doi: 10.1111/2041-210X.12073
Bonk F, Popp D, Harms H, Centler F (2018) PCR-based quantification of taxa-specific abundances in microbial communities: quantifying and avoiding common pitfalls. J Microbiol Methods 153:139–147
doi: 10.1016/j.mimet.2018.09.015
pubmed: 30267718
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583
doi: 10.1038/nmeth.3869
pubmed: 27214047
pmcid: 4927377
Chen K, Hu Z, Xia Z, Zhao D, Li W, Tyler JK (2016) The overlooked fact: fundamental need for spike-in control for virtually all genome-wide analyses. Mol Cell Biol 36:662–667
doi: 10.1128/mcb.00970-14
pmcid: 4760223
Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ (2018) Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6:226
doi: 10.1186/s40168-018-0605-2
pubmed: 30558668
pmcid: 6298009
Dopheide A, Xie D, Buckley TR, Drummond AJ, Newcomb RD (2019) Impacts of DNA extraction and PCR on DNA metabarcoding estimates of soil biodiversity. Methods Ecol Evol 10:120–133
doi: 10.1111/2041-210X.13086
Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ (2017) Microbiome datasets are compositional: and this is not optional. Front Microbiol 8:2224
doi: 10.3389/fmicb.2017.02224
pubmed: 29187837
pmcid: 5695134
Hardwick SA, Chen WY, Wong T, Kanakamedala BS, Deveson IW, Ongley SE, Santini NS, Marcellin E, Smith MA, Nielsen LK, Lovelock CE, Neilan BA, Mercer TR (2018) Synthetic microbe communities provide internal reference standards for metagenome sequencing and analysis. Nat Commun 9:1–10
doi: 10.1038/s41467-018-05555-0
Haro C, Anguita-Maeso M, Metsis M, Navas-Cortés JA, Landa BB (2021) evaluation of established methods for DNA extraction and primer pairs targeting 16S rRNA gene for bacterial microbiota profiling of olive xylem sap. Front Plant Sci 12:640829
doi: 10.3389/fpls.2021.640829
pubmed: 33777075
pmcid: 7994608
Harrison JG, John Calder W, Shuman B, Alex Buerkle C (2021) The quest for absolute abundance: the use of internal standards for DNA-based community ecology. Mol Ecol Resour 21:30–43
doi: 10.1111/1755-0998.13247
pubmed: 32889760
Herlemann DP, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF (2011) Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J 5:1571–1579
doi: 10.1038/ismej.2011.41
pubmed: 21472016
pmcid: 3176514
Jones MB, Highlander SK, Anderson EL, Li W, Dayrit M, Klitgord N, Fabani MM, Seguritan V, Green J, Pride DT, Yooseph S, Biggs W, Nelson KE, Craig Venter J (2015) Library preparation methodology can influence genomic and functional predictions in human microbiome research. Proc Natl Acad Sci U S A 112:14024–14029
doi: 10.1073/pnas.1519288112
pubmed: 26512100
pmcid: 4653211
Kõljalg U, Nilsson HR, Schigel D, Tedersoo L, Larsson KH, May TW, Taylor AFS, Jeppesen TS, Frøslev TG, Lindahl BD, Põldmaa K, Saar I, Suija A, Savchenko A, Yatsiuk I, Adojaan K, Ivanov F, Piirmann T, Pöhönen R et al (2020) The taxon hypothesis paradigm - On the unambiguous detection and communication of taxa. Microorganisms 8:1–24
doi: 10.3390/microorganisms8121910
Kong J, Liu X, Wang L, Huang H, Ou D, Guo J, Laws EA, Huang B (2021) Patterns of relative and quantitative abundances of marine bacteria in surface waters of the subtropical Northwest Pacific Ocean estimated with high-throughput quantification sequencing. Front Microbiol. https://doi.org/10.3389/fmicb.2020.599614
Lin Y, Gifford S, Ducklow H, Schofield O, Cassar N (2019) towards quantitative microbiome community profiling using internal standards. Appl Environ Microbiol 85:1–14
doi: 10.1128/AEM.02634-18
Lindner DL, Banik MT (2011) Intragenomic variation in the ITS rDNA region obscures phylogenetic relationships and inflates estimates of operational taxonomic units in genus Laetiporus. Mycologia 103:731–740
doi: 10.3852/10-331
pubmed: 21289107
Liu P, Yang S, Yang S (2022) KTU: K-mer taxonomic units improve the biological relevance of amplicon sequence variant microbiota data. Methods Ecol Evol 13:560–568
doi: 10.1111/2041-210X.13758
Lofgren LA, Uehling JK, Branco S, Bruns TD, Martin F, Kennedy PG (2019) Genome-based estimates of fungal rDNA copy number variation across phylogenetic scales and ecological lifestyles. Mol Ecol 28:721–730
doi: 10.1111/mec.14995
pubmed: 30582650
Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17:10–12
doi: 10.14806/ej.17.1.200
McMurdie PJ, Holmes S (2013) Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. https://doi.org/10.1371/journal.pone.0061217
McMurdie PJ, Holmes S (2014) Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput Biol. https://doi.org/10.1371/journal.pcbi.1003531
Morton JT, Marotz C, Washburne A, Silverman J, Zaramela LS, Edlund A, Zengler K, Knight R (2019) Establishing microbial composition measurement standards with reference frames. Nat Commun. https://doi.org/10.1038/s41467-019-10656-5
Murali A, Bhargava A, Wright ES (2018) IDTAXA: a novel approach for accurate taxonomic classification of microbiome sequences. Microbiome 6:140
doi: 10.1186/s40168-018-0521-5
pubmed: 30092815
pmcid: 6085705
O’Donnell K, Cigelnik E (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are non-orthologous. Mol Phylogenet Evol 7:103–116
doi: 10.1006/mpev.1996.0376
pubmed: 9007025
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, others (2020) Vegan: community ecology package. R package version 2.5-6. 2019
Paloi S, Luangsa-ard JJ, Mhuantong W, Stadler M, Kobmoo N (2022) Intragenomic variation in nuclear ribosomal markers and its implication in species delimitation, identification and barcoding in fungi. Fungal Biol Rev 42:1–33
doi: 10.1016/j.fbr.2022.04.002
Peres-Neto PR, Jackson DA (2001) How well do multivariate data sets match? The advantages of a procrustean superimposition approach over the Mantel test. Oecologia 129:169–178
doi: 10.1007/s004420100720
pubmed: 28547594
Props R, Kerckhof FM, Rubbens P, De VJ, Sanabria EH, Waegeman W, Monsieurs P, Hammes F, Boon N (2017) Absolute quantification of microbial taxon abundances. ISME J 11:584–587
doi: 10.1038/ismej.2016.117
pubmed: 27612291
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596
doi: 10.1093/nar/gks1219
pubmed: 23193283
pmcid: 3531112
Quinn TP, Erb I, Gloor G, Notredame C, Richardson MF, Crowley TM (2019) A field guide for the compositional analysis of any-omics data. GigaScience 8:1–14
doi: 10.1093/gigascience/giz107
R Core Team (2022) R: a language and environment for statistical computing
Rodriguez-Mena S, Camacho M, de los Santos B, Miranda L, Camacho-Sanchez M (2022) Microbiota modulation in blueberry rhizosphere by biocontrol bacteria. Microbiol Res (Pavia) 13:809–824
doi: 10.3390/microbiolres13040057
Ruppert KM, Kline RJ, Rahman MS (2019) Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: a systematic review in methods, monitoring, and applications of global eDNA. Glob Ecol Conserv 17:e00547
doi: 10.1016/j.gecco.2019.e00547
Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Fungal Barcoding Consortium (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci USA 109:6241–6246
doi: 10.1073/pnas.1117018109
pubmed: 22454494
pmcid: 3341068
Shelton AO, Gold ZJ, Jensen AJ, D′Agnese E, Andruszkiewicz Allan E, Van Cise A, Gallego R, Ramón-Laca A, Garber-Yonts M, Parsons K, Kelly RP (2022) Toward quantitative metabarcoding. Ecology.: https://doi.org/10.1002/ecy.3906
Sidstedt M, Rådström P, Hedman J (2020) PCR inhibition in qPCR, dPCR and MPS-mechanisms and solutions. Anal Bioanal Chem 412:2009–2023
doi: 10.1007/s00216-020-02490-2
pubmed: 32052066
pmcid: 7072044
Smets W, Leff JW, Bradford MA, McCulley RL, Lebeer S, Fierer N (2016) A method for simultaneous measurement of soil bacterial abundances and community composition via 16S rRNA gene sequencing. Soil Biol Biochem 96:145–151
doi: 10.1016/j.soilbio.2016.02.003
Stämmler F, Gläsner J, Hiergeist A, Holler E, Weber D, Oefner PJ, Gessner A, Spang R (2016) Adjusting microbiome profiles for differences in microbial load by spike-in bacteria. Microbiome 4:1–13
doi: 10.1186/s40168-016-0175-0
Stoddard SF, Smith BJ, Hein R, Roller BRK, Schmidt TM (2015) rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Res 43:D593–D598
doi: 10.1093/nar/gku1201
pubmed: 25414355
Taberlet P, Coissac E, Pompanon F, Brochmann C, Willerslev E (2012) Towards next-generation biodiversity assessment using DNA metabarcoding. Mol Ecol 21:2045–2050
doi: 10.1111/j.1365-294X.2012.05470.x
pubmed: 22486824
Tedersoo L, Bahram M, Zinger L, Nilsson RH, Kennedy PG, Yang T, Anslan S, Mikryukov V (2022) Best practices in metabarcoding of fungi: from experimental design to results. Mol Ecol 31:2769–2795
doi: 10.1111/mec.16460
pubmed: 35395127
Tsilimigras MCB, Fodor AA (2016) Compositional data analysis of the microbiome: fundamentals, tools, and challenges. Ann Epidemiol 26:330–335
doi: 10.1016/j.annepidem.2016.03.002
pubmed: 27255738
White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc a Guid to methods Appl 18:315–322
Wright ES (2016) Using DECIPHER v2. 0 to analyze big biological sequence data in R. R J. 8:352–359
doi: 10.32614/RJ-2016-025
Yang L, Lou J, Wang H, Wu L, Xu J (2018a) Use of an improved high-throughput absolute abundance quantification method to characterize soil bacterial community and dynamics. Sci Total Environ 633:360–371
doi: 10.1016/j.scitotenv.2018.03.201
pubmed: 29574379
Yang R-H, Su J-H, Shang J-J, Wu Y-Y, Li Y, Bao D-P, Yao Y-J (2018b) Evaluation of the ribosomal DNA internal transcribed spacer (ITS), specifically ITS1 and ITS2, for the analysis of fungal diversity by deep sequencing. PLoS One 13:e0206428
doi: 10.1371/journal.pone.0206428
pubmed: 30359454
pmcid: 6201957