Degradation of Emerging Pharmaceutical Pollutants from Wastewater Using Penicillium aurantiogriseum 2AJS.

Diclofenac Kinetics Ligninolytic enzymes Paracetamol Testosterone

Journal

Applied biochemistry and biotechnology
ISSN: 1559-0291
Titre abrégé: Appl Biochem Biotechnol
Pays: United States
ID NLM: 8208561

Informations de publication

Date de publication:
06 Sep 2023
Historique:
accepted: 04 07 2023
medline: 6 9 2023
pubmed: 6 9 2023
entrez: 6 9 2023
Statut: aheadofprint

Résumé

Approximately 3000 pharmaceutical compounds and personal care products (PPCPs) are utilized and discharged into the wastewater at low levels, and they are rarely removed or treated in wastewater treatment facilities. The present study focused on the potential ability of Penicillium aurantiogriseum 2AJS to degrade pharmaceutical and personal care products of different classes of drugs: antipyretic and analgesic drugs (paracetamol, diclofenac, and ibuprofen) and hormones (estrogen, progesterone, and testosterone). Various ligninolytic extracellular enzymatic studies were also studied. A phytotoxicity assay was performed using the Lemna minor species procured from the Vellore Institute of Technology, Vellore. The results revealed degradation of pharmaceutical and personal care products to 95.27% (paracetamol), 94.37% (diclofenac), 89.29% (ibuprofen), 94.16% (progesterone), 91.10% (estrogen), and 82.12% (testosterone). GC-MS and NMR analyses aided in proposing the degradation pathway of all six pharmaceutical compounds. Degradation kinetics showed a first-order model for all the degradation studies with R

Identifiants

pubmed: 37672162
doi: 10.1007/s12010-023-04653-0
pii: 10.1007/s12010-023-04653-0
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Mbokou, S. F., Pontié, M., Razafimandimby, B., Bouchara, J.-P., Njanja, E., & Kenfack, I. T. (2016). Evaluation of the degradation of acetaminophen by the filamentous fungus Scedosporium dehoogii using carbon-based modified electrodes. Analytical and Bioanalytical Chemistry, 408(21), 5895–5903.
pubmed: 27349916 doi: 10.1007/s00216-016-9704-8
Suresh, A., & Abraham, J. (2018). Bioremediation of hormones from waste water. In M.C. Hussain (Ed.), Handbook of environmental materials management (pp. 1–31). Springer International Publishing.
Esterhuizen-Londt, M., Schwartz, K., & Pflugmacher, S. (2016). Using aquatic fungi for pharmaceutical bioremediation: Uptake of acetaminophen by Mucor hiemalis does not result in an enzymatic oxidative stress response. Fungal Biology, 120(10), 1249–1257.
pubmed: 27647241 doi: 10.1016/j.funbio.2016.07.009
Edrees, W. H. A., Abdullah, Q. Y. M., Al-Kaf, A. G., & Naji, K. M. (2017). A review on comparative study between the physicochemical and biological processes for paracetamol degradation. Universal Journal of Pharmaceutical Research, 2, 12.
doi: 10.22270/ujpr.v2i2.RW4
Khan, N. A., Khan, A. H., Ahmed, S., Farooqi, I. H., Alam, S. S., Ali, I., … Mubashir, M. (2022). Efficient removal of ibuprofen and ofloxacin pharmaceuticals using biofilm reactors for hospital wastewater treatment. Chemosphere, 298, 134243.
Naghdi, M., Taheran, M., Brar, S. K., Kermanshahi-Pour, A., Verma, M., & Surampalli, R. Y. (2018). Removal of pharmaceutical compounds in water and wastewater using fungal oxidoreductase enzymes. Environmental pollution, 234, 190–213.
pubmed: 29175684 doi: 10.1016/j.envpol.2017.11.060
Shabani, M., Pontié, M., Younesi, H., Nacef, M., Rahimpour, A., Rahimnejad, M., & Khelladi, R. M. B. (2021). Biodegradation of acetaminophen and its main by-product 4-aminophenol by Trichoderma harzianum versus mixed biofilm of Trichoderma harzianum/Pseudomonas fluorescens in a fungal microbial fuel cell. Journal of Applied Electrochemistry, 51(4), 581–596.
doi: 10.1007/s10800-020-01518-w
Pawlowski, S., Ternes, T., Bonerz, M., Kluczka, T., van der Burg, B., Nau, H., … Braunbeck, T. (2003). Combined in situ and in vitro assessment of the estrogenic activity of sewage and surface water samples. Toxicological Sciences, 75(1), 57–65.
Schückel, J., Matura, A., & van Pee, K.-H. (2011). One-copper laccase-related enzyme from Marasmius sp.: Purification, characterization and bleaching of textile dyes. Enzyme and microbial technology, 48(3), 278–284.
pubmed: 22112912 doi: 10.1016/j.enzmictec.2010.12.002
Zhang, D., Duine, J. A., & Kawai, F. (2002). The extremely high Al resistance of Penicillium janthineleum F-13 is not caused by internal or external sequestration of Al. BioMetals, 15(2), 167.
pubmed: 12046925 doi: 10.1023/A:1015289808484
Melendez-Estrada, J., Amezcua-Allieri, M. A., Alvarez, P. J. J., & Rodríguez-Vázquez, R. (2006). Phenanthrene removal by Penicillium frequentans grown on a solid-state culture: Effect of oxygen concentration. Environmental Technology, 27(10), 1073–1080.
pubmed: 17144256 doi: 10.1080/09593332708618720
Garon, D., Krivobok, S., Wouessidjewe, D., & Seigle-Murandi, F. (2002). Influence of surfactants on solubilization and fungal degradation of fluorene. Chemosphere, 47(3), 303–309.
pubmed: 11996151 doi: 10.1016/S0045-6535(01)00299-5
Rabe, F., Ajami-Rashidi, Z., Doehlemann, G., Kahmann, R., & Djamei, A. (2013). Degradation of the plant defence hormone salicylic acid by the biotrophic fungus U stilago maydis. Molecular Microbiology, 89(1), 179–188.
pubmed: 23692401 doi: 10.1111/mmi.12269
Patkar, R. N., & Naqvi, N. I. (2017). Fungal manipulation of hormone-regulated plant defense. PLoS pathogens, 13(6), e1006334.
pubmed: 28617873 pmcid: 5472320 doi: 10.1371/journal.ppat.1006334
Thekkiniath, J. C., Zabet-Moghaddam, M., San Francisco, S. K., & San Francisco, M. J. (2013). A novel subtilisin-like serine protease of Batrachochytrium dendrobatidis is induced by thyroid hormone and degrades antimicrobial peptides. Fungal Biology, 117(6), 451–461.
pubmed: 23809655 doi: 10.1016/j.funbio.2013.05.002
Eibes, G., Debernardi, G., Feijoo, G., Moreira, M. T., & Lema, J. M. (2011). Oxidation of pharmaceutically active compounds by a ligninolytic fungal peroxidase. Biodegradation, 22(3), 539–550.
pubmed: 20972884 doi: 10.1007/s10532-010-9426-0
Pápai, M., Benedek, T., Táncsics, A., Bornemann, T. L. v, Plewka, J., Probst, A. J., Hussein, D., Maroti, G., Menashe, O., & Kriszt, B. (2023). Selective enrichment, identification, and isolation of diclofenac, ibuprofen, and carbamazepine degrading bacteria from a groundwater biofilm. Environmental Science and Pollution Research, 30, 44518–44535.
Marco-Urrea, E., Pérez-Trujillo, M., Vicent, T., & Caminal, G. (2009). Ability of white-rot fungi to remove selected pharmaceuticals and identification of degradation products of ibuprofen by Trametes versicolor. Chemosphere, 74(6), 765–772.
pubmed: 19062071 doi: 10.1016/j.chemosphere.2008.10.040
Lloret, L., Eibes, G., Feijoo, G., Moreira, M. T., & Lema, J. M. (2012). Degradation of estrogens by laccase from Myceliophthora thermophila in fed-batch and enzymatic membrane reactors. Journal of Hazardous Materials, 213–214, 175–183. https://doi.org/10.1016/j.jhazmat.2012.01.082
doi: 10.1016/j.jhazmat.2012.01.082 pubmed: 22342900
Pratush, A., Ye, X., Yang, Q., Kan, J., Peng, T., Wang, H., … Hu, Z. (2020). Biotransformation strategies for steroid estrogen and androgen pollution. Applied Microbiology and Biotechnology, 104(6), 2385–2409.
Silva, C. P., Otero, M., & Esteves, V. (2012). Processes for the elimination of estrogenic steroid hormones from water: A review. Environmental Pollution, 165, 38–58.
pubmed: 22402263 doi: 10.1016/j.envpol.2012.02.002
Chatterjee, A., & Abraham, J. (2019). Mycoremediation of 17 β-estradiol using Trichoderma citrinoviride strain AJAC3 along with enzyme studies. Environmental Progress & Sustainable Energy, 38(4), 13142.
doi: 10.1002/ep.13142
Chakraborty, P., & Abraham, J. (2017). Comparative study on degradation of norfloxacin and ciprofloxacin by Ganoderma lucidum JAPC1. Korean Journal of Chemical Engineering, 34(4), 1122–1128.
doi: 10.1007/s11814-016-0345-6
Patel, J., Kevin, G., Patel, A., Raval, M., & Sheth, N. (2011). Development of the UV spectrophotometric method of Olmesartan medoxomil in bulk drug and pharmaceutical formulation and stress degradation studies. Pharmaceutical Methods, 2(1), 36–41.
pubmed: 23781428 pmcid: 3658033 doi: 10.4103/2229-4708.81092
Zhang, K., Yuan-Ying, S., & Cai, L. (2013). An optimized protocol of single spore isolation for fungi. Cryptogamie, Mycologie, 34(4), 349–356.
doi: 10.7872/crym.v34.iss4.2013.349
Petrikkou, E., Rodríguez-Tudela, J. L., Cuenca-Estrella, M., Gómez, A., Molleja, A., & Mellado, E. (2001). Inoculum standardization for antifungal susceptibility testing of filamentous fungi pathogenic for humans. Journal of Clinical Microbiology, 39(4), 1345–1347.
pubmed: 11283054 pmcid: 87937 doi: 10.1128/JCM.39.4.1345-1347.2001
Abraham, J., & Gajendiran, A. (2019). Biodegradation of fipronil and its metabolite fipronil sulfone by Streptomyces rochei strain AJAG7 and its use in bioremediation of contaminated soil. Pesticide Biochemistry and Physiology, 155, 90–100. https://doi.org/10.1016/j.pestbp.2019.01.011
doi: 10.1016/j.pestbp.2019.01.011 pubmed: 30857632
de Santos Gomes, A. C., Casciatori, F. P., Gomes, E., de Costa CarreiraNunes, C., Moretti, M. M. S., & Thoméo, J. C. (2021). Growth kinetics of Myceliophthora thermophila M 7· 7 in solid-state cultivation. Journal of Applied Microbiology, 130(1), 90–99.
pubmed: 32640074 doi: 10.1111/jam.14774
Arora, D. S., Chander, M., & Gill, P. K. (2002). Involvement of lignin peroxidase, manganese peroxidase and laccase in degradation and selective ligninolysis of wheat straw. International Biodeterioration & Biodegradation, 50(2), 115–120.
doi: 10.1016/S0964-8305(02)00064-1
Eichlerová, I., Šnajdr, J., & Baldrian, P. (2012). Laccase activity in soils: Considerations for the measurement of enzyme activity. Chemosphere, 88(10), 1154–1160.
pubmed: 22475148 doi: 10.1016/j.chemosphere.2012.03.019
Hubicka, U., Żuromska-Witek, B., Knapczyk, D., & Krzek, J. (2014). Determination of danofloxacin and its photodegradation products by thin-layer chromatography: Kinetic evaluation of degradation process. Journal of Liquid Chromatography & Related Technologies, 37(20), 2915–2928.
doi: 10.1080/10826076.2014.907070
Fernández-Cabezón, L., Galan, B., & García, J. L. (2017). Engineering Mycobacterium smegmatis for testosterone production. Microbial Biotechnology, 10(1), 151–161.
pubmed: 27860310 doi: 10.1111/1751-7915.12433
Ummiti, K., & Shanmukha Kumar, J. V. (2021). Establishment of validated stability indicating purity method based on the stress degradation behavior of gonadotropin-releasing hormone antagonist (ganirelix) in an injectable formulation using HPLC and LC-MS-QTOF. European Journal of Mass Spectrometry, 27(2-4), 126–140.
Delbeck, S., & Heise, H. M. (2021). Systematic stability testing of insulins as representative biopharmaceuticals using ATR FTIR-spectroscopy with focus on quality assurance. Journal of Biomedical Optics, 26(4), 43007.
doi: 10.1117/1.JBO.26.4.043007
Markovic, M., Neale, P. A., Nidumolu, B., & Kumar, A. (2021). Combined toxicity of therapeutic pharmaceuticals to duckweed Lemna minor. Ecotoxicology and Environmental Safety, 208, 111428.
pubmed: 33068976 doi: 10.1016/j.ecoenv.2020.111428
Luongo, G., Siciliano, A., Libralato, G., Serafini, S., Saviano, L., Previtera, L., … Zarrelli, A. (2021). LC and NMR studies for identification and characterization of degradation byproducts of olmesartan acid, elucidation of their degradation pathway and ecotoxicity assessment. Molecules, 26(6), 1769.
Alkimin, G. D., Daniel, D., Dionísio, R., Soares, A. M. V. M., Barata, C., & Nunes, B. (2019). Effects of diclofenac and salicylic acid exposure on Lemna minor: Is time a factor? Environmental Research, 177, 108609.
pubmed: 31376628 doi: 10.1016/j.envres.2019.108609
Hiscox, J. D., & Israelstam, G. F. (1979). A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany, 57(12), 1332–1334.
doi: 10.1139/b79-163
Carbella, M., Omil, F., Lema, J. M., Llompart, M., Garcia-Jares, C., Rodriquez, I., … Ternes, T. (2004). Behavior of pharmaceuticals, cosmetics and hormones in a conventional wastewater treatment plant. Water Research, 38, 2918–2926.
Kosjek, T., Heath, E., & Kompare, B. (2007). Removal of pharmaceutical residues in a pilot wastewater treatment plant. Analytical and Bioanalytical Chemistry, 387(4), 1379–1387.
pubmed: 17203254 doi: 10.1007/s00216-006-0969-1
Suarez, S., Lema, J. M., & Omil, F. (2009). Pre-treatment of hospital wastewater by coagulation–flocculation and flotation. Bioresource Technology, 100(7), 2138–2146.
pubmed: 19109012 doi: 10.1016/j.biortech.2008.11.015
Reif, J., Varlamova, O., & Costache, F. (2008). Femtosecond laser induced nanostructure formation: Self-organization control parameters. Applied Physics A, 92(4), 1019–1024.
doi: 10.1007/s00339-008-4671-3
Gagnon, M.-A., & Lexchin, J. (2008). The cost of pushing pills: A new estimate of pharmaceutical promotion expenditures in the United States. Plos Medicine, 5(1), e1.
pubmed: 18177202 pmcid: 2174966 doi: 10.1371/journal.pmed.0050001
Olicón-Hernández, D. R., Gómez-Silván, C., Pozo, C., Andersen, G. L., González-Lopez, J., & Aranda, E. (2021). Penicillium oxalicum XD-3.1 removes pharmaceutical compounds from hospital wastewater and outcompetes native bacterial and fungal communities in fluidised batch bioreactors. International Biodeterioration & Biodegradation, 158, 105179.
Phoon, B. L., Ong, C. C., Saheed, M. S. M., Show, P.-L., Chang, J.-S., Ling, T. C., … Juan, J. C. (2020). Conventional and emerging technologies for removal of antibiotics from wastewater. Journal of hazardous materials, 400, 122961.
Anjali, R., & Shanthakumar, S. (2019). Insights on the current status of occurrence and removal of antibiotics in wastewater by advanced oxidation processes. Journal of Environmental Management, 246, 51–62.
pubmed: 31174030 doi: 10.1016/j.jenvman.2019.05.090
Oberoi, A. S., Jia, Y., Zhang, H., Khanal, S. K., & Lu, H. (2019). Insights into the fate and removal of antibiotics in engineered biological treatment systems: A critical review. Environmental Science & Technology, 53(13), 7234–7264.
doi: 10.1021/acs.est.9b01131
Langbehn, R. K., Michels, C., & Soares, H. M. (2021). Antibiotics in wastewater: From its occurrence to the biological removal by environmentally conscious technologies. Environmental Pollution, 275, 116603.
pubmed: 33578315 doi: 10.1016/j.envpol.2021.116603
Palma, T. L., Vieira, B., Nunes, J., Lourenço, J. P., Monteiro, O. C., & Costa, M. C. (2020). Photodegradation of chloramphenicol and paracetamol using PbS/TiO 2 nanocomposites produced by green synthesis. Journal of the Iranian Chemical Society, 17, 2013–2031.
doi: 10.1007/s13738-020-01906-1
Liu, N., Shi, Y. E., Li, J., Zhu, M., & Zhang, T. (2021). Identification and genome analysis of Comamonas testosteroni strain JLU460ET, a novel steroid-degrading bacterium. 3 Biotech, 11(9), 404.
pubmed: 34458066 pmcid: 8353041 doi: 10.1007/s13205-021-02949-8
Hu, J., Zhang, L. L., Chen, J. M., & Liu, Y. (2013). Degradation of paracetamol by Pseudomonas aeruginosa strain HJ1012. Journal of Environmental Science and Health, Part A, 48(7), 791–799. https://doi.org/10.1080/10934529.2013.744650
doi: 10.1080/10934529.2013.744650
Giménez, B. N., Schenone, A. V., Alfano, O. M., & Conte, L. O. (2021). Reaction kinetics formulation with explicit radiation absorption effects of the photo-Fenton degradation of paracetamol under natural pH conditions. Environmental Science and Pollution Research, 28(19), 23946–23957.
pubmed: 33398729 doi: 10.1007/s11356-020-11993-5
Misra, S. K., Pathak, K., & Pathak, D. (2021). Microbial degradation of steroids. In Inamuddin, M. I. Ahamed, & R. Prasad (Eds.), Recent advances in microbial degradation (pp. 273–295). Springer Singapore.
Suzuki, K., Hirai, H., Murata, H., & Nishida, T. (2003). Removal of estrogenic activities of 17β-estradiol and ethinylestradiol by ligninolytic enzymes from white rot fungi. Water Research, 37(8), 1972–1975.
pubmed: 12697240 doi: 10.1016/S0043-1354(02)00533-X
Singh, V., Pandey, B., & Suthar, S. (2018). Phytotoxicity of amoxicillin to the duckweed Spirodela polyrhiza: Growth, oxidative stress, biochemical traits and antibiotic degradation. Chemosphere, 201, 492–502.
pubmed: 29529576 doi: 10.1016/j.chemosphere.2018.03.010
Kaza, M., Nalecz-Jawecki, G., & Sawicki, J. (2007). The toxicity of selected pharmaceuticals to the aquatic plant Lemna minor. Fresenius Environmental Bulletin, 16(5), 524–531.

Auteurs

Anushree Suresh (A)

Microbial Biotechnology Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.

Jayanthi Abraham (J)

Microbial Biotechnology Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India. jayanthi.abraham@gmail.com.

Classifications MeSH