Malignant Mesothelioma subtyping via sampling driven multiple instance prediction on tissue image and cell morphology data.
Cancer subtyping
Computational pathology
Deep learning
Malignant Mesothelioma
Multiple instance learning
Journal
Artificial intelligence in medicine
ISSN: 1873-2860
Titre abrégé: Artif Intell Med
Pays: Netherlands
ID NLM: 8915031
Informations de publication
Date de publication:
09 2023
09 2023
Historique:
received:
26
01
2023
revised:
30
06
2023
accepted:
14
07
2023
medline:
8
9
2023
pubmed:
7
9
2023
entrez:
6
9
2023
Statut:
ppublish
Résumé
Malignant Mesothelioma is a difficult to diagnose and highly lethal cancer usually associated with asbestos exposure. It can be broadly classified into three subtypes: Epithelioid, Sarcomatoid, and a hybrid Biphasic subtype in which significant components of both of the previous subtypes are present. Early diagnosis and identification of the subtype informs treatment and can help improve patient outcome. However, the subtyping of malignant mesothelioma, and specifically the recognition of transitional features from routine histology slides has a high level of inter-observer variability. In this work, we propose an end-to-end multiple instance learning (MIL) approach for malignant mesothelioma subtyping. This uses an adaptive instance-based sampling scheme for training deep convolutional neural networks on bags of image patches that allows learning on a wider range of relevant instances compared to max or top-N based MIL approaches. We also investigate augmenting the instance representation to include aggregate cellular morphology features from cell segmentation. The proposed MIL approach enables identification of malignant mesothelial subtypes of specific tissue regions. From this a continuous characterisation of a sample according to predominance of sarcomatoid vs epithelioid regions is possible, thus avoiding the arbitrary and highly subjective categorisation by currently used subtypes. Instance scoring also enables studying tumor heterogeneity and identifying patterns associated with different subtypes. We have evaluated the proposed method on a dataset of 234 tissue micro-array cores with an AUROC of 0.89±0.05 for this task. The dataset and developed methodology is available for the community at: https://github.com/measty/PINS.
Identifiants
pubmed: 37673586
pii: S0933-3657(23)00142-2
doi: 10.1016/j.artmed.2023.102628
pii:
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
102628Subventions
Organisme : Cancer Research UK
ID : 30731
Pays : United Kingdom
Informations de copyright
Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.
Déclaration de conflit d'intérêts
Declaration of competing interest The authors have no known conflicts of interest.