3D printing of plasmonic nanofocusing tip enabling high resolution, high throughput and high contrast optical near-field imaging.


Journal

Light, science & applications
ISSN: 2047-7538
Titre abrégé: Light Sci Appl
Pays: England
ID NLM: 101610753

Informations de publication

Date de publication:
06 Sep 2023
Historique:
received: 04 08 2023
accepted: 22 08 2023
revised: 08 08 2023
medline: 7 9 2023
pubmed: 7 9 2023
entrez: 6 9 2023
Statut: epublish

Résumé

Scanning near-field optical microscopy (SNOM) offers a means to reach a fine spatial resolution down to ~ 10 nm, but unfortunately suffers from low transmission efficiency of optical signal. Here we present design and 3D printing of a fiber-bound polymer-core/gold-shell spiral-grating conical tip that allows for coupling the inner incident optical signal to the outer surface plasmon polariton with high efficiency, which then adiabatically transport, squeeze, and interfere constructively at the tip apex to form a plasmonic superfocusing spot with tiny size and high brightness. Numerical simulations and optical measurements show that this specially designed and fabricated tip has 10% transmission efficiency, ~ 5 nm spatial resolution, 20 dB signal-to-noise ratio, and 7000 pixels per second fast scanning speed. This high-resolution, high throughput, and high contrast SNOM would open up a new frontier of high spatial-temporal resolution detecting, imaging, and monitoring of single-molecule physical, chemical, and biological systems, and deepen our understanding of their basic science in the single-molecule level.

Identifiants

pubmed: 37673900
doi: 10.1038/s41377-023-01272-6
pii: 10.1038/s41377-023-01272-6
pmc: PMC10483034
doi:

Types de publication

Journal Article

Langues

eng

Pagination

219

Informations de copyright

© 2023. Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), CAS.

Références

Nano Lett. 2008 Sep;8(9):3041-5
pubmed: 18720976
Nano Lett. 2008 Oct;8(10):3357-63
pubmed: 18788789
Light Sci Appl. 2017 Feb 10;6(2):e16204
pubmed: 30167226
Opt Lett. 1996 Nov 1;21(21):1765-7
pubmed: 19881794
Light Sci Appl. 2022 May 7;11(1):129
pubmed: 35525862
Nature. 2016 Mar 31;531(7596):623-7
pubmed: 27029277
Science. 1995 Aug 25;269(5227):1083-5
pubmed: 17755529
Nature. 2013 Jun 6;498(7452):82-6
pubmed: 23739426
Nature. 2002 Jul 11;418(6894):159-62
pubmed: 12110883
Nature. 2012 Jul 5;487(7405):77-81
pubmed: 22722861
Nano Lett. 2018 Feb 14;18(2):881-885
pubmed: 29281295
Light Sci Appl. 2019 Mar 20;8:33
pubmed: 30911382
Nature. 1972 Jun 30;237(5357):510-2
pubmed: 12635200
Nano Lett. 2007 Sep;7(9):2784-8
pubmed: 17685661
Nature. 2001 Aug 16;412(6848):697-8
pubmed: 11507627
Nano Lett. 2010 Apr 14;10(4):1369-73
pubmed: 20235511
Light Sci Appl. 2016 Oct 21;5(10):e16162
pubmed: 30167125
Adv Mater. 2019 Jun;31(24):e1804774
pubmed: 30932221
Science. 1991 Mar 22;251(5000):1468-70
pubmed: 17779440
Science. 1992 Jul 10;257(5067):189-95
pubmed: 17794749
Opt Lett. 1994 Feb 1;19(3):159
pubmed: 19829577

Auteurs

Li Long (L)

School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510641, China.

Qiurong Deng (Q)

School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510641, China.

Rongtao Huang (R)

School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510641, China.

Jiafang Li (J)

School of Physics, Beijing Institute of Technology, Beijing, 100081, China.

Zhi-Yuan Li (ZY)

School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510641, China. phzyli@scut.edu.cn.
State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China. phzyli@scut.edu.cn.

Classifications MeSH