Mitigating cadmium accumulation in rice without compromising growth via modifying the regulatory region of OsNRAMP5.
CRISPR/Cas9
Cadmium accumulation
Oryza sativa (rice)
OsNRAMP5 translation
Regulatory region
Journal
Stress biology
ISSN: 2731-0450
Titre abrégé: Stress Biol
Pays: Switzerland
ID NLM: 9918284258406676
Informations de publication
Date de publication:
21 Aug 2023
21 Aug 2023
Historique:
received:
29
06
2023
accepted:
04
08
2023
medline:
7
9
2023
pubmed:
7
9
2023
entrez:
7
9
2023
Statut:
epublish
Résumé
Cadmium (Cd) intake poses a significant health risk to humans, and the contamination of rice grains with Cd is a major concern in regions where rice is a staple food. Although the knockout of OsNRAMP5, which encodes a key transporter responsible for Cd and manganese (Mn) uptake, can significantly reduce Cd accumulation in rice grains, recent studies have revealed that this knockout adversely affects plant growth, grain yield, and increases vulnerability to abiotic and biotic stresses due to reduced Mn accumulation. In this study, we employed CRISPR/Cas9 technology to modify the regulatory region of OsNRAMP5 with the aim of reducing Cd accumulation in rice grains. Our findings demonstrate that mutations in the regulatory region of OsNRAMP5 do not impact its expression pattern but result in a reduction in translation. The decreased translation of OsNRAMP5 effectively decreases grain Cd accumulation while leaving Mn accumulation and important agronomic traits, including yield, unaffected. Thus, our study presents a practical and viable strategy for reducing Cd accumulation in rice grains without compromising Mn accumulation or overall rice production.
Identifiants
pubmed: 37676342
doi: 10.1007/s44154-023-00117-x
pii: 10.1007/s44154-023-00117-x
pmc: PMC10441987
doi:
Types de publication
Journal Article
Langues
eng
Pagination
34Informations de copyright
© 2023. Northwest A&F University (NWAFU).
Références
Clemens S, Aarts MGM, Thomine S, Verbruggen N (2013) Plant science: the key to preventing slow cadmium poisoning. Trends Plant Sci 18:92–99. https://doi.org/10.1016/j.tplants.2012.08.003
doi: 10.1016/j.tplants.2012.08.003
pubmed: 22981394
Dong J, Wu T, Sun Y, He H, Li Y, Peng Y, Ji Z, Meng Q, Zhao B, Tang L (2021) Effects of OsNRAMP5 mutation on heat tolerance and main economic traits of rice under the conditions of different manganese concentration. Hybrid Rice 36:79–88. https://doi.org/10.16267/j.cnki.1005-3956.20201102.331
doi: 10.16267/j.cnki.1005-3956.20201102.331
Ishikawa S, Ishimaru Y, Igura M, Kuramata M, Abe T, Senoura T, Hase Y, Arao T, Nishizawa NK, Nakanishi H (2012) Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice. Proc Natl Acad Sci USA 109:19166–19171. https://doi.org/10.1073/pnas.1211132109
doi: 10.1073/pnas.1211132109
pubmed: 23132948
pmcid: 3511095
Leppek K, Das R, Barna M (2018) Functional 5 ’ UTR mRNA structures in eukaryotic translation regulation and how to find them. Nat Rev Mol Cell Biol 19:158–174. https://doi.org/10.1038/nrm.2017.103
doi: 10.1038/nrm.2017.103
pubmed: 29165424
Pei F, Wang G, Gao P, Feng Z, Hu K, Chen Z, Chen H, Cui A, Zuo S (2023) Evaluation of new japonica rice lines with low cadmium accumulation and good quality generated by knocking out OsNramp5. Chin J Rice Sci 37:16–28. https://doi.org/10.16819/j.1001-7216.2023.220503
doi: 10.16819/j.1001-7216.2023.220503
Sasaki A, Yamaji N, Yokosho K, Ma JF (2012) Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell 24:2155–2167. https://doi.org/10.1105/tpc.112.096925
doi: 10.1105/tpc.112.096925
pubmed: 22589467
pmcid: 3442593
Song Y, Wang YBN, Mao WF, Sui HX, Yong L, Yang DJ, Jiang DG, Zhang L, Gong YY (2017) Dietary cadmium exposure assessment among the Chinese population. PLoS One 12:e0177978. https://doi.org/10.1371/journal.pone.0177978
doi: 10.1371/journal.pone.0177978
pubmed: 28542445
pmcid: 5436861
Tang L, Mao BG, Li YK, Lv QM, Zhang LP, Chen CY, He HJ, Wang WP, Zeng XF, Shao Y, Pan YL, Hu YY, Peng Y, Fu XQ, Li HQ, Xia ST, Zhao BR (2017) Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield. Sci Rep 7:14438. https://doi.org/10.1038/s41598-017-14832-9
doi: 10.1038/s41598-017-14832-9
pubmed: 29089547
pmcid: 5663754
Tsukahara T, Ezaki T, Moriguchi J, Furuki K, Shimbo S, Matsuda-Inoguchi N, Ikeda M (2003) Rice as the most influential source of cadmium intake among general Japanese population. Sci Total Environ 305:41–51. https://doi.org/10.1016/s0048-9697(02)00475-8
doi: 10.1016/s0048-9697(02)00475-8
pubmed: 12670756
Yang CH, Zhang Y, Huang CF (2019) Reduction in cadmium accumulation in japonica rice grains by CRISPR/Cas9-mediated editing of OsNRAMP5. J Integr Agr 18:688–697. https://doi.org/10.1016/S2095-3119(18)61904-5
doi: 10.1016/S2095-3119(18)61904-5
Zhao FJ, Ma YB, Zhu YG, Tang Z, McGrath SP (2015) Soil contamination in China: current status and mitigation strategies. Environ Sci Technol 49:750–759. https://doi.org/10.1021/es5047099
doi: 10.1021/es5047099
pubmed: 25514502
Zhu HH, Chen C, Xu C, Zhu QH, Huang DY (2016) Effects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical China. Environ Pollut 219:99–106. https://doi.org/10.1016/j.envpol.2016.10.043
doi: 10.1016/j.envpol.2016.10.043
pubmed: 27794257