Two NIS1-like proteins from apple canker pathogen (Valsa mali) play distinct roles in plant recognition and pathogen virulence.
Cell death
Effector protein
Plant immunity
Valsa mali
Virulence
Journal
Stress biology
ISSN: 2731-0450
Titre abrégé: Stress Biol
Pays: Switzerland
ID NLM: 9918284258406676
Informations de publication
Date de publication:
17 Jan 2022
17 Jan 2022
Historique:
received:
17
10
2021
accepted:
19
12
2021
medline:
17
1
2022
pubmed:
17
1
2022
entrez:
7
9
2023
Statut:
epublish
Résumé
Conserved effectors produced by phytopathogens play critical roles in plant-microbe interactions. NIS1-like proteins represent a newly identified family of effectors distributed in multiple fungal species. However, their biological functions in a majority of pathogenic fungi remain largely elusive and require further investigation. In this study, we characterized two NIS1-like proteins VmNIS1 and VmNIS2 from Valsa mali, the causal agent of apple Valsa canker. Both of these two proteins were predicted to be secreted. Using agroinfiltration, we found that VmNIS1 induced intense cell death, whereas VmNIS2 suppressed INF1 elicitin-triggered cell death in Nicotiana benthamiana. Treatment of N. benthamiana with VmNIS1 recombinant protein produced by Escherichia coli activated a series of immune responses and enhanced plant disease resistance against Phytophthora capsici. In contrast, VmNIS2 suppressed plant immune responses and promoted P. capsici infection when transiently expressed in N. benthamiana. Both VmNIS1 and VmNIS2 were shown to be highly induced at late stage of V. mali infection. By individually knocking out of these two genes in V. mali, however, only VmNIS2 was shown to be required for pathogen virulence as well as tolerance to oxidative stress. Notably, we further showed that C-terminal extension of VmNIS1 was essential for plant recognition and VmNIS2 may escape plant detection via sequence truncation. Our data collectively indicate that VmNIS1 and VmNIS2 play distinct roles in plant recognition and pathogen virulence, which provided new insights into the function of NIS1-like proteins in plant-microbe interactions.
Identifiants
pubmed: 37676376
doi: 10.1007/s44154-021-00031-0
pii: 10.1007/s44154-021-00031-0
pmc: PMC10442039
doi:
Types de publication
Journal Article
Langues
eng
Pagination
7Subventions
Organisme : Postdoctoral Research Foundation of China
ID : 2021M690128
Organisme : National Natural Science Foundation-Xinjiang Joint Foundation of China
ID : U1903206
Organisme : Open Project Program of State Key Laboratory of Crop Stress Biology for Arid Areas
ID : CSBAA2020011
Organisme : Major Scientific and Technological Projects of Shaanxi Province
ID : 2020zdzx03-03-01
Informations de copyright
© 2022. The Author(s).
Références
Mol Biol Evol. 2018 Jun 1;35(6):1547-1549
pubmed: 29722887
Curr Opin Plant Biol. 2021 Aug;62:102011
pubmed: 33677388
Mol Plant Pathol. 2019 Jun;20(6):843-856
pubmed: 30912612
Proc Natl Acad Sci U S A. 2007 Jul 17;104(29):12217-22
pubmed: 17626179
Curr Opin Plant Biol. 2017 Aug;38:10-18
pubmed: 28458047
Curr Opin Immunol. 2020 Feb;62:99-105
pubmed: 31958770
Mol Microbiol. 2008 Jul;69(1):119-36
pubmed: 18452583
New Phytol. 2019 Aug 22;:
pubmed: 31436314
Annu Rev Plant Biol. 2015;66:487-511
pubmed: 25494461
Annu Rev Phytopathol. 2016 Aug 4;54:419-41
pubmed: 27359369
New Phytol. 2021 Feb;229(4):2260-2272
pubmed: 33037676
World J Microbiol Biotechnol. 2013 Sep;29(9):1563-71
pubmed: 23508400
Mol Plant Microbe Interact. 2009 Jun;22(6):619-29
pubmed: 19445587
PLoS Pathog. 2016 Mar 31;12(3):e1005529
pubmed: 27031246
J Exp Bot. 2005 Jun;56(416):1525-33
pubmed: 15837710
New Phytol. 2012 Oct;196(1):247-260
pubmed: 22816601
Annu Rev Plant Biol. 2009;60:379-406
pubmed: 19400727
Methods Mol Biol. 2011;722:199-212
pubmed: 21590423
New Phytol. 2015 Dec;208(4):1202-16
pubmed: 26137988
Curr Opin Plant Biol. 2002 Aug;5(4):318-24
pubmed: 12179965
Mol Plant Microbe Interact. 2016 Feb;29(2):96-108
pubmed: 26646532
Proc Natl Acad Sci U S A. 2019 Jan 8;116(2):496-505
pubmed: 30584105
Plant Cell. 2015 Jul;27(7):2057-72
pubmed: 26163574
New Phytol. 2015 May;206(3):1116-1126
pubmed: 25628012
Nat Rev Microbiol. 2013 Nov;11(11):800-14
pubmed: 24129511
New Phytol. 2019 Apr;222(2):995-1011
pubmed: 30537041
Nat Biotechnol. 2002 Oct;20(10):1035-9
pubmed: 12355116
Mycologia. 2011 Mar-Apr;103(2):317-24
pubmed: 21415290
Science. 2017 Feb 17;355(6326):710-714
pubmed: 28082413
Mol Plant Microbe Interact. 2013 Mar;26(3):278-86
pubmed: 23051172
Plant Physiol. 2008 Nov;148(3):1212-8
pubmed: 18775971
Front Plant Sci. 2015 Jul 27;6:579
pubmed: 26284095
PLoS Pathog. 2013;9(10):e1003670
pubmed: 24130484
Phytochemistry. 2006 Aug;67(16):1800-7
pubmed: 16430931
Plant J. 1994 Apr;5(4):507-21
pubmed: 8012404
Mol Plant Microbe Interact. 2012 May;25(5):625-36
pubmed: 22352720
Nat Rev Genet. 2010 Aug;11(8):539-48
pubmed: 20585331
Front Microbiol. 2018 Apr 25;9:821
pubmed: 29922244
Mol Plant Microbe Interact. 2014 Jan;27(1):30-9
pubmed: 24006884
Methods. 2001 Dec;25(4):402-8
pubmed: 11846609
Nature. 2006 Nov 16;444(7117):323-9
pubmed: 17108957
Mol Plant Microbe Interact. 2014 Oct;27(10):1081-94
pubmed: 25025781
Science. 2010 Aug 20;329(5994):953-5
pubmed: 20724636
Nature. 2007 Jul 26;448(7152):497-500
pubmed: 17625569
Trends Plant Sci. 2012 Nov;17(11):644-55
pubmed: 22796464
Proc Natl Acad Sci U S A. 2009 Jun 23;106(25):10359-64
pubmed: 19520828
Annu Rev Phytopathol. 2017 Aug 4;55:257-286
pubmed: 28617654
Trends Plant Sci. 2017 May;22(5):355-357
pubmed: 28359678
Plant Mol Biol. 2004 Mar;54(4):613-22
pubmed: 15316293
New Phytol. 2018 Jan;217(2):739-755
pubmed: 29076546