Inverse identification of region-specific hyperelastic material parameters for human brain tissue.

Finite element method Finite hyperelasticity Human brain tissue Ogden model Parameter identification

Journal

Biomechanics and modeling in mechanobiology
ISSN: 1617-7940
Titre abrégé: Biomech Model Mechanobiol
Pays: Germany
ID NLM: 101135325

Informations de publication

Date de publication:
Oct 2023
Historique:
received: 31 10 2022
accepted: 13 06 2023
medline: 25 9 2023
pubmed: 7 9 2023
entrez: 7 9 2023
Statut: ppublish

Résumé

The identification of material parameters accurately describing the region-dependent mechanical behavior of human brain tissue is crucial for computational models used to assist, e.g., the development of safety equipment like helmets or the planning and execution of brain surgery. While the division of the human brain into different anatomical regions is well established, knowledge about regions with distinct mechanical properties remains limited. Here, we establish an inverse parameter identification scheme using a hyperelastic Ogden model and experimental data from multi-modal testing of tissue from 19 anatomical human brain regions to identify mechanically distinct regions and provide the corresponding material parameters. We assign the 19 anatomical regions to nine governing regions based on similar parameters and microstructures. Statistical analyses confirm differences between the regions and indicate that at least the corpus callosum and the corona radiata should be assigned different material parameters in computational models of the human brain. We provide a total of four parameter sets based on the two initial Poisson's ratios of 0.45 and 0.49 as well as the pre- and unconditioned experimental responses, respectively. Our results highlight the close interrelation between the Poisson's ratio and the remaining model parameters. The identified parameters will contribute to more precise computational models enabling spatially resolved predictions of the stress and strain states in human brains under complex mechanical loading conditions.

Identifiants

pubmed: 37676609
doi: 10.1007/s10237-023-01739-w
pii: 10.1007/s10237-023-01739-w
pmc: PMC10511383
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1729-1749

Subventions

Organisme : Deutsche Forschungsgemeinschaf
ID : project number 460333672 - CRC 1540 Exploring Brain Mechanics (subprojects A01 and A02)
Organisme : Deutsche Forschungsgemeinschaf
ID : BU 3728/1-1

Informations de copyright

© 2023. The Author(s).

Références

Arndt D, Bangerth W, Davydov D et al (2021) The deal. II finite element library: design, features, and insights. Comput Math Appl 81:407–422. https://doi.org/10.1016/j.camwa.2020.02.022
doi: 10.1016/j.camwa.2020.02.022
Blumcke I, Budday S, Poduri A et al (2021) Neocortical development and epilepsy: insights from focal cortical dysplasia and brain tumours. Lancet Neurol 20(11):943–955
doi: 10.1016/S1474-4422(21)00265-9
Branch MA, Coleman TF, Li Y (1999) A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems. SIAM J Sci Comput 21(1):1–23. https://doi.org/10.1137/S1064827595289108
doi: 10.1137/S1064827595289108
Budday S, Steinmann P, Kuhl E (2015) Physical biology of human brain development. Front Cell Neurosci. https://doi.org/10.3389/fncel.2015.00257
doi: 10.3389/fncel.2015.00257
Budday S, Sommer G, Birkl C et al (2017) Mechanical characterization of human brain tissue. Acta Biomater 48:319–340. https://doi.org/10.1016/j.actbio.2016.10.036
doi: 10.1016/j.actbio.2016.10.036
Budday S, Sommer G, Haybaeck J et al (2017) Rheological characterization of human brain tissue. Acta Biomater 60:315–329. https://doi.org/10.1016/j.actbio.2017.06.024
doi: 10.1016/j.actbio.2017.06.024
Budday S, Ovaert TC, Holzapfel GA et al (2020) Fifty shades of brain: a review on the mechanical testing and modeling of brain tissue. Arch Comput Methods Eng 27(4):1187–1230. https://doi.org/10.1007/s11831-019-09352-w
doi: 10.1007/s11831-019-09352-w
Budday S, Sarem M, Starck L et al (2020) Towards microstructure-informed material models for human brain tissue. Acta Biomater 104:53–65. https://doi.org/10.1016/j.actbio.2019.12.030
doi: 10.1016/j.actbio.2019.12.030
Chatelin S, Vappou J, Roth S et al (2012) Towards child versus adult brain mechanical properties. J Mech Behav Biomed Mater 6:166–173
doi: 10.1016/j.jmbbm.2011.09.013
Delorme S, Laroche D, DiRaddo R et al (2012) NeuroTouch. Oper Neurosur 71:ons32–ons42. https://doi.org/10.1227/NEU.0b013e318249c744
doi: 10.1227/NEU.0b013e318249c744
Eskandari F, Rahmani Z, Shafieian M (2021) The effect of large deformation on Poisson’s ratio of brain white matter: an experimental study. Proc Inst Mech Eng 235(4):401–407. https://doi.org/10.1177/0954411920984027
doi: 10.1177/0954411920984027
Faber J, Hinrichsen J, Greiner A et al (2022) Tissue-scale biomechanical testing of brain tissue for the calibration of nonlinear material models. Curr Protocols. https://doi.org/10.1002/cpz1.381
doi: 10.1002/cpz1.381
Felfelian AM, Baradaran Najar A, Jafari Nedoushan R et al (2019) Determining constitutive behavior of the brain tissue using digital image correlation and finite element modeling. Biomech Model Mechanobiol 18(6):1927–1945. https://doi.org/10.1007/s10237-019-01186-6
doi: 10.1007/s10237-019-01186-6
Feng Y, Lee CH, Sun L et al (2017) Characterizing white matter tissue in large strain via asymmetric indentation and inverse finite element modeling. J Mech Behav Biomed Mater 65:490–501. https://doi.org/10.1016/j.jmbbm.2016.09.020
doi: 10.1016/j.jmbbm.2016.09.020
Fernandes FA, Tchepel D, Alves de Sousa RJ et al (2018) Development and validation of a new finite element human head model: Yet another head model (YEAHM). Eng Comput 35(1):477–496. https://doi.org/10.1108/EC-09-2016-0321
doi: 10.1108/EC-09-2016-0321
Finan JD, Sundaresh SN, Elkin BS et al (2017) Regional mechanical properties of human brain tissue for computational models of traumatic brain injury. Acta Biomater 55:333–339. https://doi.org/10.1016/j.actbio.2017.03.037
doi: 10.1016/j.actbio.2017.03.037
Forte AE, Gentleman SM, Dini D (2017) On the characterization of the heterogeneous mechanical response of human brain tissue. Biomech Model Mechanobiol 16(3):907–920. https://doi.org/10.1007/s10237-016-0860-8
doi: 10.1007/s10237-016-0860-8
Garcia K, Kroenke C, Bayly P (2018) Mechanics of cortical folding: stress, growth and stability. Philos Trans R Soc B Biol Sci 373(1759):20170,321
doi: 10.1098/rstb.2017.0321
Gavrus A, Massoni E, Chenot J (1996) An inverse analysis using a finite element model for identification of rheological parameters. J Mater Process Technol 60(1–4):447–454. https://doi.org/10.1016/0924-0136(96)02369-2
doi: 10.1016/0924-0136(96)02369-2
Ghajari M, Hellyer PJ, Sharp DJ (2017) Computational modelling of traumatic brain injury predicts the location of chronic traumatic encephalopathy pathology. Brain 140(2):333–343. https://doi.org/10.1093/brain/aww317
doi: 10.1093/brain/aww317
Giordano C, Kleiven S (2014) Connecting fractional anisotropy from medical images with mechanical anisotropy of a hyperviscoelastic fibre-reinforced constitutive model for brain tissue. J R Soc Interface 11(91):20130914. https://doi.org/10.1098/rsif.2013.0914
doi: 10.1098/rsif.2013.0914
Giudice JS, Alshareef A, Wu T et al (2021) Calibration of a heterogeneous brain model using a subject-specific inverse finite element approach. Front Bioeng Biotechnol‘. https://doi.org/10.3389/fbioe.2021.664268
doi: 10.3389/fbioe.2021.664268
Greiner A, Reiter N, Paulsen F et al (2021) Poro-viscoelastic effects during biomechanical testing of human brain tissue. Front Mech Eng 7(708):350. https://doi.org/10.3389/fmech.2021.708350
doi: 10.3389/fmech.2021.708350
Griffiths E, Hinrichsen J, Reiter N, et al (2023) On the importance of using region-dependent material parameters for full-scale human brain simulations. Eur J Mech-A/Solids:104910
Hansen KV, Brix L, Pedersen CF et al (2004) Modelling of interaction between a spatula and a human brain. Med Image Anal 8(1):23–33. https://doi.org/10.1016/j.media.2003.07.001
doi: 10.1016/j.media.2003.07.001
Ho J, Kleiven S (2009) Can sulci protect the brain from traumatic injury? J Biomech 42(13):2074–2080. https://doi.org/10.1016/j.jbiomech.2009.06.051
doi: 10.1016/j.jbiomech.2009.06.051
Holzapfel GA (2000) Nonlinear solid mechanics: a continuum approach for engineering. Wiley, Chichester, New York
Horgan TJ, Gilchrist MD (2003) The creation of three-dimensional finite element models for simulating head impact biomechanics. Int J Crashworthiness 8(4):353–366. https://doi.org/10.1533/ijcr.2003.0243
doi: 10.1533/ijcr.2003.0243
Hosseini-Farid M, Ramzanpour M, Ziejewski M et al (2019) A compressible hyper-viscoelastic material constitutive model for human brain tissue and the identification of its parameters. Int J Non-Linear Mech 116:147–154. https://doi.org/10.1016/j.ijnonlinmec.2019.06.008
doi: 10.1016/j.ijnonlinmec.2019.06.008
Hunter JD (2007) Matplotlib: a 2D graphics environment. Comput Sci Eng 9(3):90–95. https://doi.org/10.1109/MCSE.2007.55 . (conference Name: Computing in Science & Engineering)
doi: 10.1109/MCSE.2007.55
Ji S, Ghajari M, Mao H et al (2022) Use of brain biomechanical models for monitoring impact exposure in contact sports. Ann Biomed Eng. https://doi.org/10.1007/s10439-022-02999-w
doi: 10.1007/s10439-022-02999-w
Jin X, Zhu F, Mao H et al (2013) A comprehensive experimental study on material properties of human brain tissue. J Biomech 46(16):2795–2801. https://doi.org/10.1016/j.jbiomech.2013.09.001
doi: 10.1016/j.jbiomech.2013.09.001
Kang HS, Willinger R, Diaw BM, et al (1997) Validation of a 3D Anatomic Human Head Model and Replication of Head Impact in Motorcycle Accident by Finite Element Modeling. SAE Technical Paper 973339, SAE International, Warrendale, PA, 10.4271/973339, https://www.sae.org/publications/technical-papers/content/973339/ , iSSN: 0148-7191, 2688–3627
Karimi A, Rahmati SM, Razaghi R et al (2019) Mechanical measurement of the human cerebellum under compressive loading. J Med Eng Technol 43(1):55–58. https://doi.org/10.1080/03091902.2019.1609609
doi: 10.1080/03091902.2019.1609609
King A, Eckersley R (2019) Statistics for biomedical engineers and scientists. Elsevier. https://doi.org/10.1016/C2018-0-02241-0
Labus KM, Puttlitz CM (2016) An anisotropic hyperelastic constitutive model of brain white matter in biaxial tension and structural-mechanical relationships. J Mech Behav Biomed Mater 62:195–208. https://doi.org/10.1016/j.jmbbm.2016.05.003
doi: 10.1016/j.jmbbm.2016.05.003
Laksari K, Shafieian M, Darvish K (2012) Constitutive model for brain tissue under finite compression. J Biomech 45(4):642–646. https://doi.org/10.1016/j.jbiomech.2011.12.023
doi: 10.1016/j.jbiomech.2011.12.023
Li X, Zhou Z, Kleiven S (2021) An anatomically detailed and personalizable head injury model: significance of brain and white matter tract morphological variability on strain. Biomech Model Mechanobiol 20(2):403–431
doi: 10.1007/s10237-020-01391-8
MacManus DB, Murphy JG, Gilchrist MD (2018) Mechanical characterisation of brain tissue up to 35% strain at 1, 10, and 100/s using a custom-built micro-indentation apparatus. J Mech Behav Biomed Mater 87:256–266. https://doi.org/10.1016/j.jmbbm.2018.07.025
doi: 10.1016/j.jmbbm.2018.07.025
MacManus DB, Menichetti A, Depreitere B et al (2020) Towards animal surrogates for characterising large strain dynamic mechanical properties of human brain tissue. Brain Multiphys 1(100):018. https://doi.org/10.1016/j.brain.2020.100018
doi: 10.1016/j.brain.2020.100018
Majdan M, Plancikova D, Maas A et al (2017) Years of life lost due to traumatic brain injury in Europe: a cross-sectional analysis of 16 countries. PLoS Med 14(7):e1002. https://doi.org/10.1371/journal.pmed.1002331
doi: 10.1371/journal.pmed.1002331
Mao H, Zhang L, Jiang B et al (2013) Development of a finite element human head model partially validated with thirty five experimental cases. J Biomech Eng 10(1115/1):4025101
McKinney W (2010) Data Structures for Statistical Computing in Python. Austin, Texas, pp 56–61, https://doi.org/10.25080/Majora-92bf1922-00a , https://conference.scipy.org/proceedings/scipy2010/mckinney.html
Menichetti A, MacManus DB, Gilchrist MD et al (2020) Regional characterization of the dynamic mechanical properties of human brain tissue by microindentation. Int J Eng Sci 155(103):355. https://doi.org/10.1016/j.ijengsci.2020.103355
doi: 10.1016/j.ijengsci.2020.103355
Mihai LA (2017) How to characterize a nonlinear elastic material? A review on nonlinear constitutive parameters in isotropic finite elasticity. Proc R Soc A Math Phys Eng Sci 473(2207):20170,607. https://doi.org/10.1098/rspa.2017.0607
doi: 10.1098/rspa.2017.0607
Mihai LA, Chin L, Janmey PA et al (2015) A comparison of hyperelastic constitutive models applicable to brain and fat tissues. J R Soc Interface 12(110):20150486. https://doi.org/10.1098/rsif.2015.0486
doi: 10.1098/rsif.2015.0486
Mihai LA, Budday S, Holzapfel GA et al (2017) A family of hyperelastic models for human brain tissue. J Mech Phys Solids 106:60–79. https://doi.org/10.1016/j.jmps.2017.05.015
doi: 10.1016/j.jmps.2017.05.015
Miller K (2005) Method of testing very soft biological tissues in compression. J Biomech 38(1):153–158. https://doi.org/10.1016/j.jbiomech.2004.03.004
doi: 10.1016/j.jbiomech.2004.03.004
Miller K, Chinzei K, Orssengo G et al (2000) Mechanical properties of brain tissue in-vivo: experiment and computer simulation. J Biomech 33(11):1369–1376. https://doi.org/10.1016/S0021-9290(00)00120-2
doi: 10.1016/S0021-9290(00)00120-2
Moran R, Smith JH, García JJ (2014) Fitted hyperelastic parameters for Human brain tissue from reported tension, compression, and shear tests. J Biomech 47(15):3762–3766
doi: 10.1016/j.jbiomech.2014.09.030
Nair S (2009) Introduction to continuum mechanics. Cambridge University Press, New York, NY, http://proxy.uqtr.ca/login.cgi?action=login &u=uqtr &db=ebsco &ezurl=http://search.ebscohost.com/login.aspx?direct=true &scope=site &db=nlebk &AN=400754 , oCLC: 1104400968
Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7(4):308–313. https://doi.org/10.1093/comjnl/7.4.308
doi: 10.1093/comjnl/7.4.308
Ogden RW (1972) Large deformation isotropic elasticity: on the correlation of theory and experiment for compressible rubberlike solids. Proc R Soc Lond A Math Phys Sci 328(1575):567–583. https://doi.org/10.1098/rspa.1972.0096
doi: 10.1098/rspa.1972.0096
Pierrat B, MacManus D, Murphy J et al (2018) Indentation of heterogeneous soft tissue: local constitutive parameter mapping using an inverse method and an automated rig. J Mech Behav Biomed Mater 78:515–528. https://doi.org/10.1016/j.jmbbm.2017.03.033
doi: 10.1016/j.jmbbm.2017.03.033
Prevost TP, Balakrishnan A, Suresh S et al (2011) Biomechanics of brain tissue. Acta Biomater 7(1):83–95. https://doi.org/10.1016/j.actbio.2010.06.035
doi: 10.1016/j.actbio.2010.06.035
Sase K, Fukuhara A, Tsujita T et al (2015) GPU-accelerated surgery simulation for opening a brain fissure. ROBOMECH J. https://doi.org/10.1186/s40648-015-0040-0
doi: 10.1186/s40648-015-0040-0
Seber GAF, Wild CJ (2005) Nonlinear Regression: Wiley series in probability and mathematical statistics: Probability and mathematical statistics. Wiley, Hoboken
Shafieian M, Darvish KK, Stone JR (2009) Changes to the viscoelastic properties of brain tissue after traumatic axonal injury. J Biomech 42(13):2136–2142
doi: 10.1016/j.jbiomech.2009.05.041
Simo J, Miehe C (1992) Associative coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation. Comput Methods Appl Mech Eng 98(1):41–104. https://doi.org/10.1016/0045-7825(92)90170-O
doi: 10.1016/0045-7825(92)90170-O
Terpilowski M (2019) scikit-posthocs: pairwise multiple comparison tests in Python. J Open Source Softw 4(36):1169. https://doi.org/10.21105/joss.01169
doi: 10.21105/joss.01169
Virtanen P, Gommers R, Oliphant TE et al (2020) SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods 17(3):261–272. https://doi.org/10.1038/s41592-019-0686-2
doi: 10.1038/s41592-019-0686-2
Voyiadjis GZ, Samadi-Dooki A (2018) Hyperelastic modeling of the human brain tissue: effects of no-slip boundary condition and compressibility on the uniaxial deformation. J Mech Behav Biomed Mater 83:63–78. https://doi.org/10.1016/j.jmbbm.2018.04.011
doi: 10.1016/j.jmbbm.2018.04.011
Waskom M (2021) Seaborn: statistical data visualization. J Open Source Softw 6(60):3021. https://doi.org/10.21105/joss.03021
doi: 10.21105/joss.03021
Weickenmeier J, Kuhl E (2018) Multiphysics of prionlike diseases: progression and atrophy. Phys Rev Lett 121(15):158 158–101
doi: 10.1103/PhysRevLett.121.158101
Wu T, Alshareef A, Giudice JS et al (2019) Explicit modeling of white matter axonal fiber tracts in a finite element brain model. Ann Biomed Eng 47(9):1908–1922. https://doi.org/10.1007/s10439-019-02239-8
doi: 10.1007/s10439-019-02239-8
Yan W, Pangestu OD (2011) A modified human head model for the study of impact head injury. Comput Methods Biomech Biomed Engin 14(12):1049–1057. https://doi.org/10.1080/10255842.2010.506435
doi: 10.1080/10255842.2010.506435
Zarzor M, Kaessmair S, Steinmann P et al (2021) A two-field computational model couples cellular brain development with cortical folding. Brain Multiphys 2(100):025. https://doi.org/10.1016/j.brain.2021.100025
doi: 10.1016/j.brain.2021.100025
Zhao W, Ji S (2022) Cerebral vascular strains in dynamic head impact using an upgraded model with brain material property heterogeneity. J Mech Behav Biomed Mater 126(104):967. https://doi.org/10.1016/j.jmbbm.2021.104967
doi: 10.1016/j.jmbbm.2021.104967
Zhu F, Jin X, Guan F et al (2010) Identifying the properties of ultra-soft materials using a new methodology of combined specimen-specific finite element model and optimization techniques. Mater Des 31(10):4704–4712. https://doi.org/10.1016/j.matdes.2010.05.023
doi: 10.1016/j.matdes.2010.05.023
Zong Z, Lee HP, Lu C (2006) A three-dimensional human head finite element model and power flow in a human head subject to impact loading. J Biomech 39(2):284–292
doi: 10.1016/j.jbiomech.2004.11.015

Auteurs

Jan Hinrichsen (J)

Institute of Continuum Mechanics and Biomechanics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany.

Nina Reiter (N)

Institute of Continuum Mechanics and Biomechanics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany.

Lars Bräuer (L)

Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany.

Friedrich Paulsen (F)

Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany.

Stefan Kaessmair (S)

Institute of Continuum Mechanics and Biomechanics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany.

Silvia Budday (S)

Institute of Continuum Mechanics and Biomechanics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany. silvia.budday@fau.de.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH