Dose-effect relationship analysis of TCM based on deep Boltzmann machine and partial least squares.
deep Boltzmann machine
deep learning
drug dose-effect relationships
partial least squares
traditional Chinese medicine
Journal
Mathematical biosciences and engineering : MBE
ISSN: 1551-0018
Titre abrégé: Math Biosci Eng
Pays: United States
ID NLM: 101197794
Informations de publication
Date de publication:
30 06 2023
30 06 2023
Historique:
medline:
11
9
2023
pubmed:
8
9
2023
entrez:
7
9
2023
Statut:
ppublish
Résumé
A dose-effect relationship analysis of traditional Chinese Medicine (TCM) is crucial to the modernization of TCM. However, due to the complex and nonlinear nature of TCM data, such as multicollinearity, it can be challenging to conduct a dose-effect relationship analysis. Partial least squares can be applied to multicollinearity data, but its internally extracted principal components cannot adequately express the nonlinear characteristics of TCM data. To address this issue, this paper proposes an analytical model based on a deep Boltzmann machine (DBM) and partial least squares. The model uses the DBM to extract nonlinear features from the feature space, replaces the components in partial least squares, and performs a multiple linear regression. Ultimately, this model is suitable for analyzing the dose-effect relationship of TCM. The model was evaluated using experimental data from Ma Xing Shi Gan Decoction and datasets from the UCI Machine Learning Repository. The experimental results demonstrate that the prediction accuracy of the model based on the DBM and partial least squares method is on average 10% higher than that of existing methods.
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM