Manipulating nonlinear exciton polaritons in an atomically-thin semiconductor with artificial potential landscapes.
Journal
Light, science & applications
ISSN: 2047-7538
Titre abrégé: Light Sci Appl
Pays: England
ID NLM: 101610753
Informations de publication
Date de publication:
08 Sep 2023
08 Sep 2023
Historique:
received:
01
02
2023
accepted:
18
08
2023
revised:
08
08
2023
medline:
8
9
2023
pubmed:
8
9
2023
entrez:
7
9
2023
Statut:
epublish
Résumé
Exciton polaritons in atomically thin transition-metal dichalcogenide microcavities provide a versatile platform for advancing optoelectronic devices and studying the interacting Bosonic physics at ambient conditions. Rationally engineering the favorable properties of polaritons is critically required for the rapidly growing research. Here, we demonstrate the manipulation of nonlinear polaritons with the lithographically defined potential landscapes in monolayer WS
Identifiants
pubmed: 37679312
doi: 10.1038/s41377-023-01268-2
pii: 10.1038/s41377-023-01268-2
pmc: PMC10485014
doi:
Types de publication
Journal Article
Langues
eng
Pagination
220Subventions
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 12020101003
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 12250710126
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 12274034
Informations de copyright
© 2023. Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), CAS.
Références
Amo, A. et al. Superfluidity of polaritons in semiconductor microcavities. Nat. Phys. 5, 805–810 (2009).
Nitsche, W. H. et al. Algebraic order and the Berezinskii-Kosterlitz-Thouless transition in an exciton-polariton gas. Phys. Rev. B 90, 205430 (2014).
Bloch, J., Carusotto, J. & Wouters, M. Non-equilibrium Bose-Einstein condensation in photonic systems. Nat. Rev. Phys. 4, 470–488 (2022).
Kavokin, A. et al. Polariton condensates for classical and quantum computing. Nat. Rev. Phys. 4, 435–451 (2022).
Cao, T. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 3, 887 (2012).
Wang, Q. H. et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).
Chernikov, A. et al. Exciton binding energy and nonhydrogenic Rydberg Series in Monolayer WS2. Phys. Rev. Lett. 113, 076802 (2014).
Dufferwiel, S. et al. Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities. Nat. Commun. 6, 8579 (2015).
Barachati, F. et al. Interacting polariton fluids in a monolayer of tungsten disulfide. Nat. Nanotechnol. 13, 906–909 (2018).
Zhang, L. et al. Photonic-crystal exciton-polaritons in monolayer semiconductors. Nat. Commun. 9, 713 (2018).
Lundt, N. et al. Room-temperature Tamm-plasmon exciton-polaritons with a WSe
Liu, X. Z. et al. Strong light–matter coupling in two-dimensional atomic crystals. Nat. Photonics 9, 30–34 (2014).
Chen, Y. J. et al. Valley-polarized exciton-polaritons in a monolayer semiconductor. Nat. Photonics 11, 431–435 (2017).
Dufferwiel, S. et al. Valley coherent exciton-polaritons in a monolayer semiconductor. Nat. Commun. 9, 4797 (2018).
Lundt, N. et al. Optical valley Hall effect for highly valley-coherent exciton-polaritons in an atomically thin semiconductor. Nat. Nanotechnol. 14, 770–775 (2019).
Zhao, J. X. et al. Ultralow threshold polariton condensate in a monolayer semiconductor microcavity at room temperature. Nano Lett. 21, 3331–3339 (2021).
Zhao, J. X. et al. Nonlinear polariton parametric emission in an atomically thin semiconductor based microcavity. Nat. Nanotechnol. 17, 396–402 (2022).
Deng, H., Haug, H. & Yamamoto, Y. Exciton-polariton Bose-Einstein condensation. Rev. Mod. Phys. 82, 1489–1537 (2010).
Zvyagintseva, D. et al. Machine learning of phase transitions in nonlinear polariton lattices. Commun. Phys. 5, 1–10 (2022).
Delteil, A. et al. Towards polariton blockade of confined exciton–polaritons. Nat. Mater. 18, 219–222 (2019).
Munoz-Matutano, G. et al. Emergence of quantum correlations from interacting fibre-cavity polaritons. Nat. Mater. 18, 213–218 (2019).
So, J. P. et al. Polarization control of deterministic single-photon emitters in monolayer WSe
Xie, W. et al. Room-temperature polariton parametric scattering driven by a one-dimensional polariton condensate. Phys. Rev. Lett. 108, 166401 (2012).
Daskalakis, K. S. et al. Nonlinear interactions in an organic polariton condensate. Nat. Mater. 13, 271–278 (2014).
Su, R. et al. Observation of exciton polariton condensation in a perovskite lattice at room temperature. Nat. Phys. 16, 301–306 (2020).
Gu, J. et al. Enhanced nonlinear interaction of polaritons via excitonic Rydberg states in monolayer WSe
Emmanuele, R. P. A. et al. Highly nonlinear trion-polaritons in a monolayer semiconductor. Nat. Commun. 11, 3589 (2020).
Zhang, L. et al. Van der Waals heterostructure polaritons with moire-induced nonlinearity. Nature 591, 61–65 (2021).
Datta, B. et al. Highly nonlinear dipolar exciton-polaritons in bilayer MoS
Sanvitto, D. & Kena-Cohen, S. The road towards polaritonic devices. Nat. Mater. 15, 1061–1073 (2016).
Jacqmin, T. et al. Direct observation of Dirac cones and a flatband in a honeycomb lattice for polaritons. Phys. Rev. Lett. 112, 116402 (2014).
St-Jean, P. et al. Lasing in topological edge states of a one-dimensional lattice. Nat. Photonics 11, 651–656 (2017).
Su, R. et al. Optical switching of topological phase in a perovskite polariton lattice. Sci. Adv. 7, eabf8049 (2021).
Wurdack, M. et al. Motional narrowing, ballistic transport, and trapping of room-temperature exciton polaritons in an atomically-thin semiconductor. Nat. Commun. 12, 5366 (2021).
Shan, H. Y. et al. Spatial coherence of room-temperature monolayer WSe
Wurdack, M. et al. Enhancing ground-state population and macroscopic coherence of room-temperature WS2 polaritons through engineered confinement. Phys. Rev. Lett. 129, 147402 (2022).
Houck, A. A., Tureci, H. E. & Koch, J. On-chip quantum simulation with superconducting circuits. Nat. Phys. 8, 292–299 (2012).
Jiang, Y. et al. Interlayer exciton formation, relaxation, and transport in TMD van der Waals heterostructures. Light-Sci. Appl. 10, 72 (2021).
Lackner, L. et al. Tunable exciton-polaritons emerging from WS
Sturm, C. et al. All-optical phase modulation in a cavity-polariton Mach-Zehnder interferometer. Nat. Commun. 5, 3278 (2014).
Feng, J. G. et al. All-optical switching based on interacting exciton polaritons in self-assembled perovskite microwires. Sci. Adv. 7, eabj6627 (2021).
Wang, J. et al. Controllable vortex lasing arrays in a geometrically frustrated exciton-polariton lattice at room temperature. Natl. Sci. Rev. 10, nwac096 (2023).
Wang, J. et al. Spontaneously coherent orbital coupling of counterrotating exciton polaritons in annular perovskite microcavities. Light-Sci. Appl. 10, 45 (2021).
Su, R. et al. Perovskite semiconductors for room-temperature exciton-polaritonics. Nat. Mater. 20, 1315–1324 (2021).
Ghosh, S. et al. Microcavity exciton polaritons at room temperature. Photonics Insights 1, R04 (2022).
Bloch, J. et al. Strong and weak coupling regime in pillar semiconductor microcavities. Phys. E: Low.-Dimens. Syst. Nanostruct. 2, 915–919 (1998).
Winkler, K. et al. A polariton condensate in a photonic crystal potential landscape. N. J. Phys. 17, 023001 (2015).
Nardin, G. et al. Probability density tomography of microcavity polaritons confined in cylindrical traps of various sizes. Superlattices Microstruct. 47, 207–212 (2010).
Sun, Y. B. et al. Direct measurement of polariton-polariton interaction strength. Nat. Phys. 13, 870–875 (2017).
Kasprzak, J. et al. Formation of an exciton polariton condensate: thermodynamic versus kinetic regimes. Phys. Rev. Lett. 101, 146404 (2008).
Zhang, S. et al. Trapped exciton-polariton condensate by spatial confinement in a perovskite microcavity. ACS Photonics 7, 327–337 (2020).
Schneider, C. et al. Exciton-polariton trapping and potential landscape engineering. Rep. Prog. Phys. 80, 016503 (2017).
Verger, A., Ciuti, C. & Carusotto, I. Polariton quantum blockade in a photonic dot. Phys. Rev. B 73, 193306 (2006).
Yagafarov, T. et al. Mechanisms of blueshifts in organic polariton condensates. Commun. Phys. 3, 18 (2020).
Love, A. P. D. et al. Intrinsic decoherence mechanisms in the microcavity polariton condensate. Phys. Rev. Lett. 101, 067404 (2008).
Whittaker, D. M. & Eastham, P. R. Coherence properties of the microcavity polariton condensate. Europhys. Lett. 87, 27002 (2009).
Masumoto, N. et al. Exciton-polariton condensates with flat bands in a two-dimensional kagome lattice. N. J. Phys. 14, 065002 (2012).
Whittaker, C. E. et al. Exciton Polaritons in a two-dimensional Lieb Lattice with spin-orbit coupling. Phys. Rev. Lett. 120, 097401 (2018).
So, J. P. et al. Electrically driven strain-induced deterministic single-photon emitters in a van der Waals heterostructure. Sci. Adv. 7, eabj3176 (2021).