Measuring the outcomes of lateral ridge augmentation using cone-beam computed tomography.
3D imaging
bone regeneration
cone-beam computed tomography
image-based measurement
lateral ridge augmentation
Journal
Clinical implant dentistry and related research
ISSN: 1708-8208
Titre abrégé: Clin Implant Dent Relat Res
Pays: United States
ID NLM: 100888977
Informations de publication
Date de publication:
07 Sep 2023
07 Sep 2023
Historique:
revised:
10
08
2023
received:
19
04
2023
accepted:
19
08
2023
medline:
8
9
2023
pubmed:
8
9
2023
entrez:
8
9
2023
Statut:
aheadofprint
Résumé
Lateral ridge augmentation (LRA) is a surgical technique to gain bone prior to implant placement. Performing cone-beam computed tomography (CBCT) pre- and post-surgery allows for quantitative comparison of the buccal-lingual width and the vertical height of the edentulous ridges. This study used CBCT images to evaluate the bone regeneration following surgery. A total of 30 cases from adult patients who underwent LRA and had high-quality CBCT images taken pre- and post-surgery from the same CBCT scanner were available for the retrospective study. Study data included linear measurements of the bone ridge width and height obtained from the middle of the edentulous ridge and a volumetric measurement of bone growth at the edentulous site observed on the CBCT scan. The reliability of the measurements was excellent as indicated by Intra-Class Coefficient values of 0.974 or higher. There was a significant mean bone increase from pre-surgery compared to post-surgery for both the linear and volumetric measurements. The linear bone gain ranged from 1.5 to 2.5 mm and volumetric gain from 250 to 750 mm LRA before implant placement helped to increase bone for the majority of patients, particularly for surgical sites in the mandible. The quantitative analyses in the CBCT images showed excellent intra-examiner agreement.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : UBC Faculty of Dentistry Graduate Research Fund
Informations de copyright
© 2023 The Authors. Clinical Implant Dentistry and Related Research published by Wiley Periodicals LLC.
Références
Albrektsson T, Zarb G, Worthington P, Eriksson AR. The long-term efficacy of currently used dental implants: a review and proposed criteria of success. Int J Oral Maxillofac Implants. 1986;1(1):11-25. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/3527955
Bashutski JD, Wang HL. Common implant esthetic complications. Implant Dent. 2007;16(4):340-348. doi:10.1097/ID.0b013e318159ca05
Spray JR, Black CG, Morris HF, Ochi S. The influence of bone thickness on facial marginal bone response: stage 1 placement through stage 2 uncovering. Ann Periodontol. 2000;5(1):119-128. doi:10.1902/annals.2000.5.1.119
Miyamoto Y, Obama T. Dental cone beam computed tomography analyses of postoperative labial bone thickness in maxillary anterior implants: comparing immediate and delayed implant placement. Int J Periodontics Restorative Dent. 2011;31(3):215-225. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/21556378
Benavides E, Rios HF, Ganz SD, et al. Use of cone beam computed tomography in implant dentistry: the International Congress of Oral Implantologists consensus report. Implant Dent. 2012;21(2):78-86. doi:10.1097/ID.0b013e31824885b5
Bornstein MM, Scarfe WC, Vaughn VM, Jacobs R. Cone beam computed tomography in implant dentistry: a systematic review focusing on guidelines, indications, and radiation dose risks. Int J Oral Maxillofac Implants. 2014;29(Suppl):55-77. doi:10.11607/jomi.2014suppl.g1.4
Hatcher DC. Operational principles for cone-beam computed tomography. J Am Dent Assoc. 2010;141(Suppl 3):3S-6S. doi:10.14219/jada.archive.2010.0359
Tyndall DA, Price JB, Tetradis S, et al. Position statement of the American Academy of Oral and Maxillofacial Radiology on selection criteria for the use of radiology in dental implantology with emphasis on cone beam computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;113(6):817-826. doi:10.1016/j.oooo.2012.03.005
Worthington P, Rubenstein J, Hatcher DC. The role of cone-beam computed tomography in the planning and placement of implants. J Am Dent Assoc. 2010;141(Suppl 3):19S-24S. doi:10.14219/jada.archive.2010.0358
Alawaji Y, MacDonald DS, Giannelis G, Ford NL. Optimization of cone beam computed tomography image quality in implant dentistry. Clin Exp Dent Res. 2018;4(6):268-278. doi:10.1002/cre2.141
Dawood A, Brown J, Sauret-Jackson V, Purkayastha S. Optimization of cone beam CT exposure for pre-surgical evaluation of the implant site. Dentomaxillofac Radiol. 2012;41(1):70-74. doi:10.1259/dmfr/16421849
Dagassan-Berndt DC, Clemens W, Zitzmann NU, Schulze RK. Influence of three-dimensional imaging on implant treatment planning: implant diameter and length. J Contemp Dent Pract. 2018;19(6):704-711. https://www.ncbi.nlm.nih.gov/pubmed/29959300
Miles MS, Parks ET, Eckert GJ, Blanchard SB. Comparative evaluation of mandibular canal visibility on cross-sectional cone-beam CT images: a retrospective study. Dentomaxillofac Radiol. 2016;45(2):20150296. doi:10.1259/dmfr.20150296
Barbu HA-O, Iancu SA, Rapani A, Stacchi CA-O. Guided bone regeneration with concentrated growth factor enriched bone graft matrix (sticky bone) vs. bone-shell technique in horizontal ridge augmentation: a retrospective study. J Clin Med. 2021;10(17):3953. doi:10.3390/jcm10173953
Spin-Neto R, Stavropoulos A, Coletti FL, Pereira LA, Marcantonio E Jr, Wenzel A. Remodeling of cortical and corticocancellous fresh-frozen allogeneic block bone grafts-a radiographic and histomorphometric comparison to autologous bone grafts. Clin Oral Implants Res. 2015;26(7):747-752. doi:10.1111/clr.12343
Arab HR, Moeintaghavi A, Taheri M, Sargolzaie N, Aghasizadeh D, Shiezadeh F. Lateral ridge augmentation with autogenous bone harvested using trephine drills: a noninvasive technique. Open Dent J. 2016;10:1-11. doi:10.2174/1874210601610010001
Mordenfeld A, Aludden H, Starch-Jensen T. Lateral ridge augmentation with two different ratios of deproteinized bovine bone and autogenous bone: a 2-year follow-up of a randomized and controlled trial. Clin Implant Dent Relat Res. 2017;19(5):884-894. doi:10.1111/cid.12512
Parvini P, Sader R, Sahin D, Becker J, Schwarz F. Radiographic outcomes following lateral alveolar ridge augmentation using autogenous tooth roots. Int J Implant Dent. 2018;4(1):31. doi:10.1186/s40729-018-0142-6
Basma HS, Saleh MHA, Geurs NC, et al. The effect of bone particle size on the histomorphometric and clinical outcomes following lateral ridge augmentation procedures: a randomized double-blinded controlled trial. J Periodontol. 2022;94:163-173. doi:10.1002/JPER.22-0212
Iglesias-Velazquez O, Zamora RS, Lopez-Pintor RM, et al. Periosteal pocket flap technique for lateral ridge augmentation. A comparative pilot study versus guide bone regeneration. Ann Anat. 2022;243:151950. doi:10.1016/j.aanat.2022.151950
Kakar A, Kakar K, Sripathi Rao BH, et al. Lateral alveolar ridge augmentation procedure using subperiosteal tunneling technique: a pilot study. Maxillofac Plast Reconstr Surg. 2018;40(1):3. doi:10.1186/s40902-018-0142-8
Deepika-Penmetsa SL, Thomas R, Baron TK, Shah R, Mehta DS. Cortical lamina technique: a therapeutic approach for lateral ridge augmentation using guided bone regeneration. J Clin Exp Dent. 2017;9(1):e21-e26. doi:10.4317/jced.53008
Wang M, Zhang X, Li Y, Mo A. Lateral ridge augmentation with guided bone regeneration using particulate bone substitutes and injectable platelet-rich fibrin in a digital workflow: 6 month results of a prospective cohort study based on cone-beam computed tomography data. Materials (Basel). 2021;14(21):6430. doi:10.3390/ma14216430
Hamada Y, Kondoh T, Noguchi K, et al. Application of limited cone beam computed tomography to clinical assessment of alveolar bone grafting: a preliminary report. Cleft Palate Craniofac J. 2005;42(2):128-137. doi:10.1597/03-035.1
Shahidi S, Zamiri B, Abolvardi M, Akhlaghian M, Paknahad M. Comparison of dental panoramic radiography and CBCT for measuring vertical bone height in different horizontal locations of posterior mandibular alveolar process. J Dent (Shiraz). 2018;19(2):83-91.
Fokas G, Vaughn VM, Scarfe WC, Bornstein MM. Accuracy of linear measurements on CBCT images related to presurgical implant treatment planning: a systematic review. Clin Oral Implants Res. 2018;29 Suppl(16):393-415. doi:10.1111/clr.13142
Ganguly R, Ruprecht A, Vincent S, Hellstein J, Timmons S, Qian F. Accuracy of linear measurement in the Galileos cone beam computed tomography under simulated clinical conditions. Dentomaxillofac Radiol. 2011;40(5):299-305. doi:10.1259/dmfr/72117593
Kobayashi K, Shimoda S, Nakagawa Y, Yamamoto A. Accuracy in measurement of distance using limited cone-beam computerized tomography. Int J Oral Maxillofac Implants. 2004;19(2):228-231.
Halperin-Sternfeld M, Machtei EE, Horwitz J. Diagnostic accuracy of cone beam computed tomography for dimensional linear measurements in the mandible. Int J Oral Maxillofac Implants. 2014;29(3):593-599. doi:10.11607/jomi.3409
Ismail A, Lakschevitz F, MacDonald D, Ford NL. Measurement accuracy in cone beam computed tomography in the presence of metal artifact. Int J Oral Maxillofac Implants. 2022;37(1):143-152. doi:10.11607/jomi.9079