What to expect from the novel pulsed thulium:YAG laser? A systematic review of endourological applications.
Holmium:YAG
Laser
Lithotripsy
TFL
Thulium:YAG
Journal
World journal of urology
ISSN: 1433-8726
Titre abrégé: World J Urol
Pays: Germany
ID NLM: 8307716
Informations de publication
Date de publication:
Nov 2023
Nov 2023
Historique:
received:
10
07
2023
accepted:
11
08
2023
medline:
9
11
2023
pubmed:
8
9
2023
entrez:
8
9
2023
Statut:
ppublish
Résumé
Several preclinical studies about a novel pulsed-thulium:yttrium-aluminum-garnet (p-Tm:YAG) device have been published, demonstrating its possible clinical relevance. We systematically reviewed the reality and expectations for this new p-Tm:YAG technology. A PubMed, Scopus and Embase search were performed. All relevant studies and data identified in the bibliographic search were selected, categorized, and summarized. Tm:YAG is a solid state diode-pumped laser that emits at a wavelength of 2013 nm, in the infrared spectrum. Despite being close to the Ho:YAG emission wavelength (2120 nm), Tm:YAG is much closer to the water absorption peak and has higher absorption coefficient in liquid water. At present, there very few evaluations of the commercially available p-Tm:YAG devices. There is a lack of information on how the technical aspects, functionality and pulse mechanism can be maximized for clinical utility. Available preclinical studies suggest that p-Tm:YAG laser may potentially increase the ablated stone weight as compared to Ho:YAG under specific condition and similar laser parameters, showing lower retropulsion as well. Regarding laser safety, a preclinical study observed similar absolute temperature and cumulative equivalent minutes at 43° C as compared to Ho:YAG. Finally, laser-associated soft-tissue damage was assessed at histological level, showing similar extent of alterations due to coagulation and necrosis when compared with the other clinically relevant lasers. The p-Tm:YAG appears to be a potential alternative to the Ho:YAG and TFL according to these preliminary laboratory data. Due to its novelty, further studies are needed to broaden our understanding of its functioning and clinical applicability.
Identifiants
pubmed: 37682286
doi: 10.1007/s00345-023-04580-z
pii: 10.1007/s00345-023-04580-z
doi:
Substances chimiques
Thulium
8RKC5ATI4P
Water
059QF0KO0R
Holmium
W1XX32SQN1
Types de publication
Systematic Review
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
3301-3308Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Fried NM (2018) Recent advances in infrared laser lithotripsy. Biomed Opt Express 9(9):4552–4568
doi: 10.1364/BOE.9.004552
pubmed: 30615704
pmcid: 6157791
Johnson DE, Cromeens DM, Price RE (1992) Use of the holmium:YAG laser in urology. Lasers Surg Med 12:353–363
doi: 10.1002/lsm.1900120402
pubmed: 1386643
Ventimiglia E, Traxer O (2019) What is Moses effect: an historical perspective. J Endourol 35:353–357. https://doi.org/10.1089/end.2019.0012
doi: 10.1089/end.2019.0012
European Association of Urology (EAU) (2023) Guidelines, Urolithiasis. https://uroweb.org/guidelines/urolithiasis
Traxer O, Keller EX (2020) Thulium fiber laser: the new player for kidney stone treatment? A comparison with Holmium:YAG laser. World J Urol 38:1883–1894. https://doi.org/10.1007/s00345-019-02654-5
doi: 10.1007/s00345-019-02654-5
pubmed: 30729311
Khandpur RS (2020) Laser, Thulium:YAG. In: Compendium of biomedical instrumentation, vol 2. Wiley, pp 1165–1167. https://doi.org/10.1002/9781119288190.ch218
Proietti S, Rodríguez-Socarrás ME, Eisner BH, Lucianò R, Basulto Martinez MJ, Yeow Y et al (2021) Thulium:YAG versus Holmium:YAG laser effect on upper urinary tract soft tissue: evidence from an ex vivo experimental study. J Endourol 35:544–551. https://doi.org/10.1089/end.2020.0222
doi: 10.1089/end.2020.0222
pubmed: 32808543
Netsch C, Becker B, Tiburtius C, Moritz C, Becci AV, Herrmann TRW et al (2017) A prospective, randomized trial comparing thulium vapoenucleation with holmium laser enucleation of the prostate for the treatment of symptomatic benign prostatic obstruction: perioperative safety and efficacy. World J Urol 35:1913–1921. https://doi.org/10.1007/s00345-017-2071-z
doi: 10.1007/s00345-017-2071-z
pubmed: 28698991
Taratkin M, Azilgareeva C, Taratkina D, Goryacheva E, Rapoport L, Enikeev D (2021) Laser endoscopic procedures on the prostate: it is the small details that count. Curr Opin Urol 31:468–472. https://doi.org/10.1097/MOU.0000000000000919
doi: 10.1097/MOU.0000000000000919
pubmed: 34231543
Netsch C, Bach T, Herrmann TRW, Gross AJ (2015) Update on the current evidence for Tm:YAG vapoenucleation of the prostate 2014. World J Urol 33:517–524. https://doi.org/10.1007/s00345-014-1417-z
doi: 10.1007/s00345-014-1417-z
pubmed: 25300823
Hashim H, Worthington J, Abrams P, Young G, Taylor H, Noble SM et al (2020) Thulium laser transurethral vaporesection of the prostate versus transurethral resection of the prostate for men with lower urinary tract symptoms or urinary retention (UNBLOCS): a randomised controlled trial. Lancet (London, England) 396:50–61. https://doi.org/10.1016/S0140-6736(20)30537-7
doi: 10.1016/S0140-6736(20)30537-7
pubmed: 32622397
Kramer MW, Wolters M, Cash H, Jutzi S, Imkamp F, Kuczyk MA et al (2015) Current evidence of transurethral Ho:YAG and Tm:YAG treatment of bladder cancer: update 2014. World J Urol 33:571–579. https://doi.org/10.1007/s00345-014-1337-y
doi: 10.1007/s00345-014-1337-y
pubmed: 24935098
Defidio L, Antonucci M, De Dominicis M, Fuchs G, Patel A (2019) Thulium-Holmium:YAG duo laser in conservative upper tract urothelial cancer treatment: 13 years experience from a tertiary national referral center. J Endourol 33:902–908. https://doi.org/10.1089/end.2019.0308
doi: 10.1089/end.2019.0308
pubmed: 31422699
Pal D, Ghosh A, Sen R, Pal A (2016) Continuous-wave and quasi-continuous wave thulium-doped all-fiber laser: implementation on kidney stone fragmentations. Appl Opt 55:6151–6155. https://doi.org/10.1364/AO.55.006151
doi: 10.1364/AO.55.006151
pubmed: 27534454
Kronenberg P, Somani B (2018) Advances in lasers for the treatment of stones—a systematic review. Curr Urol Rep. https://doi.org/10.1007/s11934-018-0807-y
doi: 10.1007/s11934-018-0807-y
pubmed: 29774438
pmcid: 5958148
Hartung FO, Kowalewski K-F, von Hardenberg J, Worst TS, Kriegmair MC, Nuhn P et al (2021) Holmium versus thulium laser enucleation of the prostate: a systematic review and meta-analysis of randomized controlled trials. Eur Urol Focus. https://doi.org/10.1016/j.euf.2021.03.024
doi: 10.1016/j.euf.2021.03.024
pubmed: 33840611
Zhang JJ, Rajabhandharaks D, Xuan JR, Wang H, Chia RWJ, Hasenberg T et al (2015) Water content contribution in calculus phantom ablation during Q-switched Tm:YAG laser lithotripsy. J Biomed Opt 20:128001. https://doi.org/10.1117/1.JBO.20.12.128001
doi: 10.1117/1.JBO.20.12.128001
pubmed: 26662067
Huang H, Li M, Liu P, Jin L, Wang H, Shen D (2016) Gold nanorods as the saturable absorber for a diode-pumped nanosecond Q-switched 2 μm solid-state laser. Opt Lett 41:2700–2703. https://doi.org/10.1364/OL.41.002700
doi: 10.1364/OL.41.002700
pubmed: 27304267
Cho CY, Chen YF, Zhang G, Chen WD, Liang HC (2017) Exploring the self-mode locking of the 2 μm Tm:YAG laser with suppression of the self-pulsing dynamic. Opt Lett 42:5226–5229. https://doi.org/10.1364/OL.42.005226
doi: 10.1364/OL.42.005226
pubmed: 29240178
Gao P, Huang H, Wang X, Liu H, Huang J, Weng W et al (2018) Passively Q-switched solid-state Tm:YAG laser using topological insulator Bi(2)Te(3) as a saturable absorber. Appl Opt 57:2020–2024. https://doi.org/10.1364/AO.57.002020
doi: 10.1364/AO.57.002020
pubmed: 29603988
Xu J, Cai E, Zhang S, Fan X, Wang M, Lou F et al (2021) Nickel-vanadium layered double hydroxide nanosheets as the saturable absorber for a passively Q-switched 2 µm solid-state laser. Appl Opt 60:1851–1855. https://doi.org/10.1364/AO.413803
doi: 10.1364/AO.413803
pubmed: 33690273
Rohde I, Masch J-M, Theisen-Kunde D, Marczynski-Bühlow M, Bombien Quaden R, Lutter G et al (2015) Resection of calcified aortic heart leaflets in vitro by Q-switched 2 µm microsecond laser radiation. J Card Surg 30:157–162. https://doi.org/10.1111/jocs.12481
doi: 10.1111/jocs.12481
pubmed: 25530080
Wang Q, Teng H, Zou Y, Zhang Z, Li D, Wang R et al (2012) Graphene on SiC as a Q-switcher for a 2 μm laser. Opt Lett 37:395–397. https://doi.org/10.1364/OL.37.000395
doi: 10.1364/OL.37.000395
pubmed: 22297364
Gao C, Lin Z, Gao M, Zhang Y, Zhu L, Wang R et al (2010) Single-frequency operation of diode-pumped 2 microm Q-switched Tm:YAG laser injection seeded by monolithic nonplanar ring laser. Appl Opt 49:2841–2844. https://doi.org/10.1364/AO.49.002841
doi: 10.1364/AO.49.002841
pubmed: 20490245
Li C, Song J, Shen D, Kim NS, Ueda K, Huo Y et al (1999) Diode-pumped high-efficiency Tm:YAG lasers. Opt Express 4:12–18. https://doi.org/10.1364/oe.4.000012
doi: 10.1364/oe.4.000012
pubmed: 19396251
Kovacs M, Flynn G, Javan A (1966) Q switching of molecular laser transitions. Appl Phys Lett. https://doi.org/10.1063/1.1754484
doi: 10.1063/1.1754484
Ventimiglia E, Villa L, Doizi S, Briganti A, Proietti S, Giusti G et al (2021) Laser lithotripsy: the importance of peak power and pulse modulation. Eur Urol Focus 7:22–25. https://doi.org/10.1016/j.euf.2021.01.012
doi: 10.1016/j.euf.2021.01.012
pubmed: 33531287
Petzold R, Suarez-Ibarrola R, Miernik A (2021) Gas bubble anatomy during laser lithotripsy: an experimental in vitro study of a pulsed solid-state Tm:YAG and Ho:YAG device. J Endourol 35:1051–1057. https://doi.org/10.1089/end.2020.0526
doi: 10.1089/end.2020.0526
pubmed: 33207950
Petzold R, Miernik A, Suarez-Ibarrola R (2021) In vitro dusting performance of a new solid state thulium laser compared to holmium laser lithotripsy. J Endourol 35:221–225. https://doi.org/10.1089/end.2020.0525
doi: 10.1089/end.2020.0525
pubmed: 32799650
Kraft L, Yilmaz M, Petzold R, Gratzke C, Suarez-Ibarrola R, Miernik A (2022) Dusting efficiency of a novel pulsed thulium: yttrium aluminum garnet laser vs a thulium fiber laser. J Endourol 36:259–265. https://doi.org/10.1089/end.2021.0441
doi: 10.1089/end.2021.0441
pubmed: 34693738
Panthier F, Ventimiglia E, Berthe L, Chaussain C, Daudon M, Doizi S et al (2020) How much energy do we need to ablate 1 mm(3) of stone during Ho:YAG laser lithotripsy? An in vitro study. World J Urol 38:2945–2953. https://doi.org/10.1007/s00345-020-03091-5
doi: 10.1007/s00345-020-03091-5
pubmed: 31989208
Ventimiglia E, Pauchard F, Gorgen ARH, Panthier F, Doizi S, Traxer O (2021) How do we assess the efficacy of Ho:YAG low-power laser lithotripsy for the treatment of upper tract urinary stones? Introducing the Joules/mm(3) and laser activity concepts. World J Urol 39:891–896. https://doi.org/10.1007/s00345-020-03241-9
doi: 10.1007/s00345-020-03241-9
pubmed: 32462304
Kraft L, Petzold R, Suarez-Ibarrola R, Miernik A (2022) In vitro fragmentation performance of a novel, pulsed Thulium solid-state laser compared to a Thulium fibre laser and standard Ho:YAG laser. Lasers Med Sci 37:2071–2078. https://doi.org/10.1007/s10103-021-03495-8
doi: 10.1007/s10103-021-03495-8
pubmed: 34905141
Ventimiglia E, Corsini C, Fantin M, Traxer O, Salonia A (2022) Clinical comparison of thulium fiber and holmium: yttrium-aluminum-garnet lasers for the treatment of upper urinary tract stone disease: are we doing it right? Minerva Urol Nephrol 74:502–503. https://doi.org/10.23736/S2724-6051.22.05006-6
doi: 10.23736/S2724-6051.22.05006-6
pubmed: 36125023
Robesti D, Villa L, Saccomandi P, Traxer O, Salonia A, Ventimiglia E (2022) Ho:YAG laser and temperature: is it safe to use high-power settings? World J Urol 40:1891–1892. https://doi.org/10.1007/s00345-022-04014-2
doi: 10.1007/s00345-022-04014-2
pubmed: 35438313
Kamal W, Kallidonis P, Koukiou G, Amanatides L, Panagopoulos V, Ntasiotis P et al (2016) Stone retropulsion with Ho: YAG and Tm: YAG lasers: a clinical practice-oriented experimental study. J Endourol 30:1145–1149. https://doi.org/10.1089/end.2016.0212
doi: 10.1089/end.2016.0212
pubmed: 27527803
Petzold R, Miernik A, Suarez-Ibarrola R (2021) Retropulsion force in laser lithotripsy-an in vitro study comparing a Holmium device to a novel pulsed solid-state Thulium laser. World J Urol 39:3651–3656. https://doi.org/10.1007/s00345-021-03668-8
doi: 10.1007/s00345-021-03668-8
pubmed: 33758959
pmcid: 8510939
Huusmann S, Lafos M, Meyenburg I, Muschter R, Teichmann H-O, Herrmann T (2021) Tissue effects of a newly developed diode pumped pulsed Thulium:YAG laser compared to continuous wave Thulium:YAG and pulsed Holmium:YAG laser. World J Urol 39:3503–3508. https://doi.org/10.1007/s00345-021-03634-4
doi: 10.1007/s00345-021-03634-4
pubmed: 33728503
pmcid: 8510916
Yilmaz M, Esser J, Kraft L, Petzold R, Sigle A, Gratzke C et al (2022) Experimental ex-vivo performance study comparing a novel, pulsed thulium solid-state laser, chopped thulium fibre laser, low and high-power holmium:YAG laser for endoscopic enucleation of the prostate. World J Urol 40:601–606. https://doi.org/10.1007/s00345-021-03825-z
doi: 10.1007/s00345-021-03825-z
pubmed: 34477954
Petzold R, Suarez-Ibarrola R, Miernik A (2021) Temperature assessment of a novel pulsed thulium solid-state laser compared with a holmium:yttrium-aluminum-garnet laser. J Endourol 35:853–859. https://doi.org/10.1089/end.2020.0803
doi: 10.1089/end.2020.0803
pubmed: 33191783
De Coninck V, Defraigne C, Traxer O (2022) Watt determines the temperature during laser lithotripsy. World J Urol 40:1257–1258. https://doi.org/10.1007/s00345-021-03848-6
doi: 10.1007/s00345-021-03848-6
pubmed: 34599675
Sapareto SA, Dewey WC (1984) Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys 10:787–800. https://doi.org/10.1016/0360-3016(84)90379-1
doi: 10.1016/0360-3016(84)90379-1
pubmed: 6547421
Villa L, Cloutier J, Comperat E, Kronemberg P, Charlotte F, Berthe L et al (2016) Do we really need to wear proper eye protection when using holmium:yag laser during endourologic procedures? Results from an ex vivo animal model on pig eyes. J Endourol 30:332–337. https://doi.org/10.1089/end.2015.0232
doi: 10.1089/end.2015.0232
pubmed: 26472513