Bi/Mn-Doped BiOCl Nanosheets Self-Assembled Microspheres toward Optimized Photocatalytic Performance.
BiOCl
manganese doping
photocatalysis
self-assembly
Journal
Nanomaterials (Basel, Switzerland)
ISSN: 2079-4991
Titre abrégé: Nanomaterials (Basel)
Pays: Switzerland
ID NLM: 101610216
Informations de publication
Date de publication:
25 Aug 2023
25 Aug 2023
Historique:
received:
10
07
2023
revised:
20
08
2023
accepted:
23
08
2023
medline:
9
9
2023
pubmed:
9
9
2023
entrez:
9
9
2023
Statut:
epublish
Résumé
Doping engineering of metallic elements is of significant importance in photocatalysis, especially in the transition element range where metals possess empty 'd' orbitals that readily absorb electrons and increase carrier concentration. The doping of Mn ions produces dipole interactions that change the local structure of BiOCl, thus increasing the specific surface area of BiOCl and the number of mesoporous distributions, and providing a broader platform and richer surface active sites for catalytic reactions. The combination of Mn doping and metal Bi reduces the forbidden bandwidth of BiOCl, thereby increasing the absorption in the light region and strengthening the photocatalytic ability of BiOCl. The degradation of norfloxacin by Bi/Mn-doped BiOCl can reach 86.5% within 10 min. The synergistic effect of Mn doping and Bi metal can change the internal energy level and increase light absorption simultaneously. The photocatalytic system created by such a dual-technology combination has promising applications in environmental remediation.
Identifiants
pubmed: 37686916
pii: nano13172408
doi: 10.3390/nano13172408
pmc: PMC10490148
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : the National Natural Science Foundation of China
ID : 52172206
Organisme : the Basic Research Project of Science, Education and Production Integration Pilot Project
ID : 2023PY015
Organisme : the Heilongjiang Province Natural Science Foundation
ID : LH2021B021
Organisme : the Shandong Province Natural Science Foundation
ID : ZR2022QD062
Références
J Am Chem Soc. 2022 Nov 16;144(45):20620-20629
pubmed: 36332107
J Am Chem Soc. 2022 Dec 28;144(51):23321-23331
pubmed: 36516341
Nat Commun. 2022 Dec 15;13(1):7772
pubmed: 36522345
J Am Chem Soc. 2022 Mar 9;144(9):3821-3832
pubmed: 35199991
Nat Commun. 2022 Dec 15;13(1):7769
pubmed: 36522326
Nat Commun. 2021 Oct 11;12(1):5923
pubmed: 34635665
J Am Chem Soc. 2023 Jan 25;145(3):1759-1768
pubmed: 36607337
J Am Chem Soc. 2020 Apr 22;142(16):7574-7583
pubmed: 32267152
Angew Chem Int Ed Engl. 2022 Aug 8;61(32):e202206108
pubmed: 35670014
ACS Nano. 2020 Sep 22;14(9):11262-11272
pubmed: 32813492
J Am Chem Soc. 2022 Aug 17;144(32):14769-14777
pubmed: 35924845
Environ Sci Technol. 2015 Oct 20;49(20):12432-40
pubmed: 26375261
Adv Mater. 2021 Dec;33(51):e2105308
pubmed: 34610648
Water Res. 2023 Jul 15;240:120088
pubmed: 37247435
J Am Chem Soc. 2022 Dec 21;144(50):23223-23229
pubmed: 36490370
ACS Nano. 2020 May 26;14(5):5529-5542
pubmed: 32283010
J Am Chem Soc. 2022 Sep 28;144(38):17416-17422
pubmed: 36098659
J Am Chem Soc. 2022 Oct 26;144(42):19619-19626
pubmed: 36223550
J Am Chem Soc. 2022 May 4;144(17):7622-7633
pubmed: 35442661
J Phys Chem Lett. 2018 Dec 6;9(23):6814-6817
pubmed: 30990726
Angew Chem Int Ed Engl. 2022 May 2;61(19):e202200937
pubmed: 35233878
J Am Chem Soc. 2021 May 5;143(17):6551-6559
pubmed: 33852319
ACS Appl Mater Interfaces. 2021 Dec 1;13(47):56171-56180
pubmed: 34784191
Adv Mater. 2021 Jul;33(30):e2008225
pubmed: 34114270
J Am Chem Soc. 2020 Jan 15;142(2):847-856
pubmed: 31825213
J Am Chem Soc. 2022 Sep 14;144(36):16572-16578
pubmed: 36049089
Sci Bull (Beijing). 2020 Nov 30;65(22):1916-1923
pubmed: 36738057
J Am Chem Soc. 2022 Aug 24;144(33):15185-15192
pubmed: 35948416
J Am Chem Soc. 2023 Jan 18;145(2):1144-1154
pubmed: 36538569
J Am Chem Soc. 2022 Aug 31;144(34):15718-15726
pubmed: 35975916
J Am Chem Soc. 2022 Sep 21;144(37):17173-17185
pubmed: 36074011
Nanoscale. 2013 Nov 7;5(21):10573-81
pubmed: 24056871