Two-way reaction of versatile peroxidase with artificial lignin enhances low-molecular weight fractions.
PCA
RP-HPLC-MS
artificial lignin
oligomer fractions
ultrafiltration
versatile peroxidase
Journal
Biotechnology journal
ISSN: 1860-7314
Titre abrégé: Biotechnol J
Pays: Germany
ID NLM: 101265833
Informations de publication
Date de publication:
Dec 2023
Dec 2023
Historique:
revised:
03
08
2023
received:
27
06
2023
accepted:
30
08
2023
pubmed:
9
9
2023
medline:
9
9
2023
entrez:
9
9
2023
Statut:
ppublish
Résumé
In recent years, versatile peroxidase (VP) has emerged as a promising enzyme for biotechnological applications, as it can oxidize lignin without the external mediators. To gain insights into the breakdown process of artificial lignin by VP, reaction between the two was studied. Degradation products were fractionated using ultrafiltration and analyzed by RP- high performance liquid chromatography with mass detection (HPLC-MS) chromatography. Four fractions were obtained based on their molecular sizes: >10, 3-10, 1-3, and <1 kDa. Interestingly, while VP did not significantly alter the yields of these fractions, the chromatograms revealed the presence of oligomers with different molecular weights (MWs) resulting from the enzymatic activity. The VP exhibits a dual role in its enzymatic activity: both degrading and synthesizing these oligomers. This was confirmed by principal component analysis (PCA). The positive correlations were found between certain oligomers (D1 and D2, D5 and D6, as well as between D7, D10, T2, and T4), suggesting their simultaneous degradation. On the other hand, a negative correlation was found between the monomer and some oligomers (D7, D10, T2, and T4), indicating the decomposition of these oligomers into monomers. These findings shed light on the intricate interplay between VP and artificial lignin, offering valuable insights for potential applications in lignin valorization.
Identifiants
pubmed: 37688491
doi: 10.1002/biot.202300312
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2300312Informations de copyright
© 2023 Wiley-VCH GmbH.
Références
Riyadi, F. A., Tahir, A. A., Yusof, N., Sabri, N. S. A., Noor, M. J. M. M., Akhir, F. N. M. D., Othman, N., Zakaria, Z., & Hara, H. (2020). Enzymatic and genetic characterization of lignin depolymerization by Streptomyces sp. S6 isolated from a tropical environment. Scientific Reports, 10, 7813.
Zhou, N., Thilakarathna, W. P. D. W., He, Q. S., & Rupasinghe, H. P. V. (2022). A review: Depolymerization of lignin to generate high-value bio-products: Opportunities, challenges, and prospects. Frontiers in Energy Research, 9, 758744.
Chen, Z., & Wan, C. (2017). Biological valorization strategies for converting lignin into fuels and chemicals. Renewable and Sustainable Energy Reviews, 73, 610.
Hämäläinen, V., Grönroos, T., Suonpää, A., Heikkilä, M. W., Romein, B., Ihalainen, P., Malandra, S., & Birikh, K. R. (2018). Enzymatic processes to unlock the lignin value. Frontiers in Bioengineering and Biotechnology, 6, 20.
Zhao, L., Zhang, J., Zhao, D., Jia, L., Qin, B., Cao, X., Zang, L., Lu, F., & Liu, F. (2022). Biological degradation of lignin: A critical review on progress and perspectives. Industrial Crops and Products, 188, (B), 115715.
Tien, M., & Kirk, T. K. (1983). Lignin-degrading enzyme from the hymenomycete phanerochaete chrysosporium burds. Science, 221, 661.
Glenn, J. K., Morgan, M. A, Mayfield, M. B., Kuwahara, M., & Gold, M. H. (1983). An extracellular H2O2-requiring enzyme preparation involved in lignin biodegradation by the white rot basidiomycete Phanerochaete chrysosporium. Biochemical and Biophysical Research Communications, 114, 1077.
Datta, R., Kelkar, A., Baraniya, D., Molaei, A., Moulick, A., Meena, R. S., & Formanek, P. (2017). Enzymatic degradation of lignin in soil: A review. Sustainability, 9, 1163.
Fernández-Fueyo, E., Ruiz-Duenas, F. J., & Martinez, A. T. (2014). Engineering a fungal peroxidase that degrades lignin at very acidic pH. Biotechnology for Biofuels, 7, 114.
Ruiz-Dueñas, F. J., Morales, M., Garcia, E., Miki, Y., & Martínez, M. J., & Martinez, A. T. (2009). Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases. Journal of Experimental Botany, 60(2), 441.
Falade, A. O., Nwodo, U. U., Iweriebor, B. C., Green, E., Mabinya, L. V., & Okoh, A. I. (2017). Lignin peroxidase functionalities and prospective applications. MicrobiologyOpen, 6, e00394.
Umezawa, T., & Higuchi, T. (1989). Cleavages of aromatic ring and β-O-4 bond of synthetic lignin (DHP) by lignin peroxidase. FEBS Letters, 242, 325.
Kondo, R., Iimori, T., Imamura, H., & Nishida, T. (1990). Polymerization of DHP and depolymerization of DHP-glucoside by lignin oxidizing enzymes. Journal of Biotechnology, 13, 181.
Camarero, S., Sarkar, S., Ruiz-Dueñas, F. J., Martınez, M. J., & Martınez, A. T. (1999). Description of a versatile peroxidase involved in the natural degradation of lignin that has both manganese peroxidase and lignin peroxidase substrate interaction sites. Journal of Biological Chemistry, 274, 10324.
Martınez, M. J., Ruiz-Duenas, F. J., Guillen, F., & Martınez, A. T. (1996). Purification and catalytic properties of two manganese peroxidase isoenzymes from Pleurotus eryngii. European Journal of Biochemistry, 237, 424.
Ravichandran, A., & Sridhar, M. (2017). Insights into the mechanism of lignocellulose degradation by versatile peroxidases. Current Science, 113, 35.
Pogni, R., Baratto, M. C., Giansanti, S., Teutloff, C., Verdin, J., Valderrama, B., Lendzian, F., Lubitz, W., Vazquez-Duhalt, R., & Basosi, R. (2005). Tryptophan-based radical in the catalytic mechanism of versatile peroxidase from Bjerkandera adusta. Biochemistry, 44, 4267.
Busse, N., Wagner, D., Kraume, M., & Czermak, P. (2013). Reaction kinetics of versatile peroxidase for the degradation of lignin compounds. American Journal of Biochemistry and Biotechnology, 9, 365.
Radotíć, K., Simić-Krstić, J., Jeremić, M., & Trifunović, M. (1994). A study of lignin formation at the molecular level by scanning tunneling microscopy. Biophysical Journal, 66, 1763.
Radotíć, K., Todorović, S., Zakrzewska, J., & Jeremić, M. (1998). Study of photochemical reactions of coniferyl alcohol. II. Comparative structural study of a photochemical and enzymatic polymer of coniferyl alcohol. Photochemistry and Photobiology, 68, 703.
Radotić, K., Djikanović, D., Kalauzi, A., Tanasijević, G., Maksimović, V., & Maksimović, J. D (2022). Influence of silicon on polymerization process during lignin synthesis. Implications for cell wall properties. International Journal of Biological Macromolecules, 198, 168.
Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144.
Salvachúa, D., Prieto, A., Mattinen, M. L., Tamminen, T., Liitiä, T., Lille, M., Willför, S., Martínez, A. T., Martínez, M. J., & Faulds, C. B. (2013). Versatile peroxidase as a valuable tool for generating new biomolecules by homogeneous and heterogeneous cross-linking. Enzyme and Microbial Technology, 52, 303.
Varnaite, R., Raudonienė, V., & Bridžiuvienė, D. (2011). Enzymatic biodegradation of lignin-cellulose complex in plant origin material. Materials Science, 17, 99.
Saikia, K., Vishnu, D., Rathankumar, A. K., Athiyaman, B. P., Batista-García, R. A., Folch-Mallol, J. L., Cabana, H., & Kumar, V. V. (2020). Development of a magnetically separable co-immobilized laccase and versatile peroxidase system for the conversion of lignocellulosic biomass to vanillin. Journal of the Air & Waste Management Association, 70, 1252.
Zmejkoski, D., Spasojević, D., Orlovska, I., Kozyrovska, N., Soković, M., Glamočlija, J., Dmitrović, S., Matović, B., Tasić, N., Maksimović, V., Sosnin, M., & Radotić, K. (2018). Bacterial cellulose-lignin composite hydrogel as a promising agent in chronic wound healing. International Journal of Biological Macromolecules, 118, 494.
Reale, S., Attanasio, F., Spreti, N., & De Angelis, F. (2010). Lignin chemistry: Biosynthetic study and structural characterisation of coniferyl alcohol oligomers formed in vitro in a micellar environment. Chemistry - A European Journal, 16, 6077.
Kirk, T. K. (1980). Lignin biodegradation: Microbiology, chemistry, and potential applications (vol. II, 1st ed.). CRC Press.
Gonzalez-Perez, D., & Alcalde, M. (2018). The making of versatile peroxidase by directed evolution. Biocatalysis and Biotransformation, 36, 1.
Ilic Ðurđic, K., Ostafe, R., Ðurđević Ðelmaš, A., Popović, N., Schillberg, S., Fischer, R., & Prodanović, R. (2020). Saturation mutagenesis to improve the degradation of azo dyes by versatile peroxidase and application in form of VP-coated yeast cell walls. Enzyme and Microbial Technology, 136, 109509.
Ilić Đurđić, K., Ece, S., Ostafe, R., Vogel, S., Schillberg, S., Fischer, R., & Prodanović, R. (2020). Improvement in oxidative stability of versatile peroxidase by flow cytometry-based high-throughput screening system. Biochemical Engineering Journal, 157, 107555.
Mohorcic, M., Bencina, M., Friedrich, J., & Jerala, R. (2009). Expression of soluble versatile peroxidase of Bjerkandera adusta in Escherichia coli. Bioresource Technology, 100, 851.
Barber-Zucker, S., Mindel, V., Garcia-Ruiz, E., Weinstein, J. J., Alcalde, M., & Fleishman, S. J. (2022). Stable and functionally diverse versatile peroxidases designed directly from sequences. Journal of the American Chemical Society, 144, 3564.
Kong, W., Fu, X., Wang, L., Alhujaily, A., Zhang, J., Ma, F., Zhang, X., & Yu, H. (2017). A novel and efficient fungal delignification strategy based on versatile peroxidase for lignocellulose bioconversion. Biotechnology for Biofuels, 10, 218.