Genomic characterization of colistin-resistant Klebsiella pneumoniae isolated from intensive care unit patients in Egypt.
Colistin resistance
Egypt
ICU
Klebsiella pneumoniae
MPNP
WGS
XDR
mcr-1.1
mgrB
Journal
Annals of clinical microbiology and antimicrobials
ISSN: 1476-0711
Titre abrégé: Ann Clin Microbiol Antimicrob
Pays: England
ID NLM: 101152152
Informations de publication
Date de publication:
09 Sep 2023
09 Sep 2023
Historique:
received:
25
06
2023
accepted:
29
08
2023
medline:
11
9
2023
pubmed:
10
9
2023
entrez:
9
9
2023
Statut:
epublish
Résumé
Egypt has witnessed elevated incidence rates of multidrug-resistant Klebsiella pneumoniae infections in intensive care units (ICUs). The treatment of these infections is becoming more challenging whilst colistin-carbapenem-resistant K. pneumoniae is upsurging. Due to the insufficiently available data on the genomic features of colistin-resistant K. pneumoniae in Egypt, it was important to fill in the gap and explore the genomic characteristics, as well as the antimicrobial resistance, the virulence determinants, and the molecular mechanisms of colistin resistance in such a lethal pathogen. Seventeen colistin-resistant clinical K. pneumoniae isolates were collected from ICUs in Alexandria, Egypt in a 6-month period in 2020. Colistin resistance was phenotypically detected by modified rapid polymyxin Nordmann/Poirel and broth microdilution techniques. The isolates susceptibility to 20 antimicrobials was determined using Kirby-Bauer disk diffusion method. Whole genome sequencing and bioinformatic analysis were employed for exploring the virulome, resistome, and the genetic basis of colistin resistance mechanisms. Out of the tested K. pneumoniae isolates, 82.35% were extensively drug-resistant and 17.65% were multidrug-resistant. Promising susceptibility levels towards tigecycline (88.24%) and doxycycline (52.94%) were detected. Population structure analysis revealed seven sequence types (ST) and K-types: ST383-K30, ST147-K64, ST17-K25, ST111-K63, ST11-K15, ST14-K2, and ST525-K45. Virulome analysis revealed yersiniabactin, aerobactin, and salmochelin siderophore systems in ˃ 50% of the population. Hypervirulence biomarkers, iucA (52.94%) and rmpA/A2 (5.88%) were detected. Extended-spectrum β-lactamase- and carbapenemase-producers accounted for 94.12% of the population, with bla In this study, we present the genotypic colistin resistance mechanisms in K. pneumoniae isolated in Egypt. More effective antibiotic stewardship protocols must be implemented by Egyptian health authorities to restrain this hazard and safeguard the future utility of colistin. This is the first characterization of a complete sequence of mcr-1.1-bearing IncHI2/IncHI2A plasmid recovered from K. pneumoniae clinical isolate belonging to the emerging high-risk clone ST525.
Sections du résumé
BACKGROUND
BACKGROUND
Egypt has witnessed elevated incidence rates of multidrug-resistant Klebsiella pneumoniae infections in intensive care units (ICUs). The treatment of these infections is becoming more challenging whilst colistin-carbapenem-resistant K. pneumoniae is upsurging. Due to the insufficiently available data on the genomic features of colistin-resistant K. pneumoniae in Egypt, it was important to fill in the gap and explore the genomic characteristics, as well as the antimicrobial resistance, the virulence determinants, and the molecular mechanisms of colistin resistance in such a lethal pathogen.
METHODS
METHODS
Seventeen colistin-resistant clinical K. pneumoniae isolates were collected from ICUs in Alexandria, Egypt in a 6-month period in 2020. Colistin resistance was phenotypically detected by modified rapid polymyxin Nordmann/Poirel and broth microdilution techniques. The isolates susceptibility to 20 antimicrobials was determined using Kirby-Bauer disk diffusion method. Whole genome sequencing and bioinformatic analysis were employed for exploring the virulome, resistome, and the genetic basis of colistin resistance mechanisms.
RESULTS
RESULTS
Out of the tested K. pneumoniae isolates, 82.35% were extensively drug-resistant and 17.65% were multidrug-resistant. Promising susceptibility levels towards tigecycline (88.24%) and doxycycline (52.94%) were detected. Population structure analysis revealed seven sequence types (ST) and K-types: ST383-K30, ST147-K64, ST17-K25, ST111-K63, ST11-K15, ST14-K2, and ST525-K45. Virulome analysis revealed yersiniabactin, aerobactin, and salmochelin siderophore systems in ˃ 50% of the population. Hypervirulence biomarkers, iucA (52.94%) and rmpA/A2 (5.88%) were detected. Extended-spectrum β-lactamase- and carbapenemase-producers accounted for 94.12% of the population, with bla
CONCLUSIONS
CONCLUSIONS
In this study, we present the genotypic colistin resistance mechanisms in K. pneumoniae isolated in Egypt. More effective antibiotic stewardship protocols must be implemented by Egyptian health authorities to restrain this hazard and safeguard the future utility of colistin. This is the first characterization of a complete sequence of mcr-1.1-bearing IncHI2/IncHI2A plasmid recovered from K. pneumoniae clinical isolate belonging to the emerging high-risk clone ST525.
Identifiants
pubmed: 37689686
doi: 10.1186/s12941-023-00632-9
pii: 10.1186/s12941-023-00632-9
pmc: PMC10492301
doi:
Substances chimiques
Colistin
Z67X93HJG1
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
82Informations de copyright
© 2023. BioMed Central Ltd., part of Springer Nature.
Références
Podschun R, Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev. 1998;11(4):589–603.
pubmed: 9767057
pmcid: 88898
doi: 10.1128/CMR.11.4.589
Saharman YR, Karuniawati A, Severin JA, Verbrugh HA. Infections and antimicrobial resistance in intensive care units in lower-middle income countries: a scoping review. Antimicrob Resist Infect Control. 2021;10(1):22.
pubmed: 33514432
pmcid: 7844809
doi: 10.1186/s13756-020-00871-x
Al-Baz AA, Maarouf A, Marei A, Abdallah AL. Prevalence and antibiotic resistance profiles of carbapenem-resistant Klebsiella pneumoniae isolated from Tertiary Care Hospital, Egypt. Egypt J Hosp Med. 2022;88(1):2883–90.
doi: 10.21608/ejhm.2022.242765
Hawkey PM, Warren RE, Livermore DM, McNulty CAM, Enoch DA, Otter JA, et al. Treatment of infections caused by multidrug-resistant Gram-negative bacteria: report of the british Society for Antimicrobial Chemotherapy/Healthcare infection Society/British infection Association Joint Working Party. J Antimicrob Chemother. 2018;73(Suppl 3):iii2–iii78.
pubmed: 29514274
doi: 10.1093/jac/dky027
Kotb S, Lyman M, Ismail G, Abd El Fattah M, Girgis SA, Etman A, et al. Epidemiology of carbapenem-resistant Enterobacteriaceae in Egyptian intensive care units using National Healthcare-associated infections surveillance data, 2011–2017. Antimicrob Resist Infect Control. 2020;9(1):2.
pubmed: 31911830
pmcid: 6942386
doi: 10.1186/s13756-019-0639-7
Nordmann P, Naas T, Poirel L. Global spread of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis. 2011;17(10):1791–8.
pubmed: 22000347
pmcid: 3310682
doi: 10.3201/eid1710.110655
WHO. Prioritization of pathogens to guide discovery, research and development of new antibiotics for drug-resistant bacterial infections, including tuberculosis. Geneva: World Health Organization; 2017. Report No. 9789240026438 (electronic version) 9789240026421 (print version) Contract No. WHO/EMP/IAU/2017.12.
El-Sayed Ahmed MAE, Zhong LL, Shen C, Yang Y, Doi Y, Tian GB. Colistin and its role in the era of antibiotic resistance: an extended review (2000–2019). Emerg Microbes Infect. 2020;9(1):868–85.
pubmed: 32284036
pmcid: 7241451
doi: 10.1080/22221751.2020.1754133
Baron S, Hadjadj L, Rolain JM, Olaitan AO. Molecular mechanisms of polymyxin resistance: knowns and unknowns. Int J Antimicrob Agents. 2016;48(6):583–91.
pubmed: 27524102
doi: 10.1016/j.ijantimicag.2016.06.023
Sameni F, Ghazi M, Dadashi M, Bostanshirin N, Al-Dahmoshi HOM, Khosravi-Dehaghi N, et al. Global distribution, genotypes and prevalent sequence types of colistin-resistant Klebsiella pneumoniae isolated from clinical samples; a systematic review. Gene Rep. 2022;28:101635.
doi: 10.1016/j.genrep.2022.101635
Zafer MM, El-Mahallawy HA, Abdulhak A, Amin MA, Al-Agamy MH, Radwan HH. Emergence of colistin resistance in multidrug-resistant Klebsiella pneumoniae and Escherichia coli strains isolated from cancer patients. Ann Clin Microbiol Antimicrob. 2019;18(1):40.
pubmed: 31831019
pmcid: 6909591
doi: 10.1186/s12941-019-0339-4
Berglund B. Acquired resistance to colistin via chromosomal and plasmid-mediated mechanisms in Klebsiella pneumoniae. Infect Microbes Dis. 2019;1(1):10–9.
doi: 10.1097/IM9.0000000000000002
Wang C, Feng Y, Liu L, Wei L, Kang M, Zong Z. Identification of novel mobile colistin resistance gene mcr-10. Emerg Microbes Infect. 2020;9(1):508–16.
pubmed: 32116151
pmcid: 7067168
doi: 10.1080/22221751.2020.1732231
Poirel L, Jayol A, Nordmann P. Polymyxins: antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin Microbiol Rev. 2017;30(2):557–96.
pubmed: 28275006
pmcid: 5355641
doi: 10.1128/CMR.00064-16
Jeannot K, Bolard A, Plesiat P. Resistance to polymyxins in Gram-negative organisms. Int J Antimicrob Agents. 2017;49(5):526–35.
pubmed: 28163137
doi: 10.1016/j.ijantimicag.2016.11.029
WHO. World Health Organization model list of essential medicines: 22nd list (2021). Geneva: World Health Organization; 2021. Contract No. WHO/MHP/HPS/EML/2021.02.
Aris P, Robatjazi S, Nikkhahi F, Amin Marashi SM. Molecular mechanisms and prevalence of colistin resistance of Klebsiella pneumoniae in the Middle East region: a review over the last 5 years. J Glob Antimicrob Resist. 2020;22:625–30.
pubmed: 32590186
doi: 10.1016/j.jgar.2020.06.009
Ahmed ZS, Elshafiee EA, Khalefa HS, Kadry M, Hamza DA. Evidence of colistin resistance genes (mcr-1 and mcr-2) in wild birds and its public health implication in Egypt. Antimicrob Resist Infect Control. 2019;8:197.
pubmed: 31827778
pmcid: 6892208
doi: 10.1186/s13756-019-0657-5
Abozahra R, Gaballah A, Abdelhamid SM. Prevalence of the colistin resistance gene MCR-1 in colistin-resistant Klebsiella pneumoniae in Egypt. AIMS Microbiol. 2023;9(2):177–94.
pubmed: 37091824
pmcid: 10113170
doi: 10.3934/microbiol.2023011
Elmonir W, Abd El-Aziz NK, Tartor YH, Moustafa SM, Abo Remela EM, Eissa R, et al. Emergence of colistin and carbapenem resistance in extended-spectrum β-lactamase producing Klebsiella pneumoniae isolated from chickens and humans in Egypt. Biology. 2021;10(5):373.
pubmed: 33926062
pmcid: 8146310
doi: 10.3390/biology10050373
Elbaradei A, Sayedahmed MS, El-Sawaf G, Shawky SM. Screening of mcr-1 among Gram-negative bacteria from different clinical samples from ICU patients in Alexandria, Egypt: one-year study. Pol J Microbiol. 2022;71(1):83–90.
pubmed: 35635164
pmcid: 9152917
doi: 10.33073/pjm-2022-011
Nordmann P, Jayol A, Poirel L. Rapid detection of polymyxin resistance in Enterobacteriaceae. Emerg Infect Dis. 2016;22(6):1038–43.
pubmed: 27191712
pmcid: 4880072
doi: 10.3201/eid2206.151840
Esposito F, Fernandes MR, Lopes R, Muñoz M, Sabino CP, Cunha MP, et al. Detection of colistin-resistant MCR-1-positive Escherichia coli by use of assays based on inhibition by EDTA and zeta potential. J Clin Microbiol. 2017;55(12):3454–65.
pubmed: 28978685
pmcid: 5703812
doi: 10.1128/JCM.00835-17
Zakaria AS, Edward EA, Mohamed NM. Genomic insights into a colistin-resistant uropathogenic Escherichia coli strain of O23:H4-ST641 lineage harboring mcr-1.1 on a conjugative IncHI2 plasmid from Egypt. Microorganisms. 2021;9(4):799.
pubmed: 33920265
pmcid: 8069611
doi: 10.3390/microorganisms9040799
CLSI. Performance standards for antimicrobial susceptibility testing, 31st ed. CLSI Supplement M100. Wayne: Clinical and Laboratory Standards Institute; 2021
FDA Database. https://www.fda.gov/drugs/development-resources/tigecycline-injection-products . Accessed 5 July 2020.
bcl2fastq conversion software v2.20. Illumina, San Diego, CA. 2019. https://support.illumina.com/content/dam/illumina-support/documents/documentation/software_documentation/bcl2fastq/bcl2fastq2-v2-20-software-guide-15051736-03.pdf .
Chen S, Zhou Y, Chen Y, Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34(17):i884–90.
pubmed: 30423086
pmcid: 6129281
doi: 10.1093/bioinformatics/bty560
Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013;29(8):1072–5.
pubmed: 23422339
pmcid: 3624806
doi: 10.1093/bioinformatics/btt086
Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol Biol Evol. 2021;38(10):4647–54.
pubmed: 34320186
pmcid: 8476166
doi: 10.1093/molbev/msab199
Chen L, Yang J, Yu J, Yao Z, Sun L, Shen Y, et al. VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res. 2005;33(Suppl 1):D325–8.
pubmed: 15608208
Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res. 2006;34(Database issue):D32–6.
pubmed: 16381877
doi: 10.1093/nar/gkj014
Kaas RS, Leekitcharoenphon P, Aarestrup FM, Lund O. Solving the problem of comparing whole bacterial genomes across different sequencing platforms. PLoS ONE. 2014;9(8):e104984.
pubmed: 25110940
pmcid: 4128722
doi: 10.1371/journal.pone.0104984
Letunic I, Bork P. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49(W1):W293–6.
pubmed: 33885785
pmcid: 8265157
doi: 10.1093/nar/gkab301
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–77.
pubmed: 22506599
pmcid: 3342519
doi: 10.1089/cmb.2012.0021
Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016;44(14):6614–24.
pubmed: 27342282
pmcid: 5001611
doi: 10.1093/nar/gkw569
Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O, Villa L, et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother. 2014;58(7):3895–903.
pubmed: 24777092
pmcid: 4068535
doi: 10.1128/AAC.02412-14
Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V, et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother. 2020;75(12):3491–500.
pubmed: 32780112
pmcid: 7662176
doi: 10.1093/jac/dkaa345
Gilchrist CLM, Chooi Y-H. Clinker & clustermap.js: automatic generation of gene cluster comparison figures. Bioinformatics. 2021;37(16):2473–5.
pubmed: 33459763
doi: 10.1093/bioinformatics/btab007
Carniel E. The Yersinia high-pathogenicity island: an iron-uptake island. Microbes Infect. 2001;3(7):561–9.
pubmed: 11418330
doi: 10.1016/S1286-4579(01)01412-5
Uzairue LI, Rabaan AA, Adewumi FA, Okolie OJ, Folorunso JB, Bakhrebah MA, et al. Global prevalence of colistin resistance in Klebsiella pneumoniae from bloodstream infection: a systematic review and meta-analysis. Pathogens. 2022;11(10):1092.
pubmed: 36297149
pmcid: 9607870
doi: 10.3390/pathogens11101092
Pitt ME, Elliott AG, Cao MD, Ganesamoorthy D, Karaiskos I, Giamarellou H, et al. Multifactorial chromosomal variants regulate polymyxin resistance in extensively drug-resistant Klebsiella pneumoniae. Microb Genom. 2018;4(3):e000158.
pubmed: 29431605
pmcid: 5885010
Nawfal Dagher T, Azar E, Al-Bayssari C, Chamieh AS, Rolain JM. First detection of colistin-resistant Klebsiella pneumoniae in association with NDM-5 carbapenemase isolated from clinical lebanese patients. Microb Drug Resist. 2019;25(6):925–30.
pubmed: 30883263
doi: 10.1089/mdr.2018.0383
Sabirova JS, Xavier BB, Coppens J, Zarkotou O, Lammens C, Janssens L, et al. Whole-genome typing and characterization of bla
pubmed: 26968884
doi: 10.1093/jac/dkw003
ElMahallawy HA, Zafer MM, Amin MA, Ragab MM, Al-Agamy MH. Spread of carbapenem resistant Enterobacteriaceae at tertiary care cancer hospital in Egypt. Infect Dis. 2018;50(7):560–4.
doi: 10.1080/23744235.2018.1428824
Samuelsen O, Naseer U, Karah N, Lindemann PC, Kanestrom A, Leegaard TM, et al. Identification of Enterobacteriaceae isolates with OXA-48 and coproduction of OXA-181 and NDM-1 in Norway. J Antimicrob Chemother. 2013;68(7):1682–5.
pubmed: 23463214
doi: 10.1093/jac/dkt058
Pishnian Z, Haeili M, Feizi A. Prevalence and molecular determinants of colistin resistance among commensal Enterobacteriaceae isolated from poultry in northwest of Iran. Gut Pathog. 2019;11(1):2.
pubmed: 30728861
pmcid: 6354369
doi: 10.1186/s13099-019-0282-0
Follador R, Heinz E, Wyres KL, Ellington MJ, Kowarik M, Holt KE, et al. The diversity of Klebsiella pneumoniae surface polysaccharides. Microb Genom. 2016;2(8):e000073.
pubmed: 28348868
pmcid: 5320592
Wyres KL, Lam MMC, Holt KE. Population genomics of Klebsiella pneumoniae. Nat Rev Microbiol. 2020;18(6):344–59.
pubmed: 32055025
doi: 10.1038/s41579-019-0315-1
Russo TA, Olson R, MacDonald U, Beanan J, Davidson BA. Aerobactin, but not yersiniabactin, salmochelin, or enterobactin, enables the growth/survival of hypervirulent (hypermucoviscous) Klebsiella pneumoniae ex vivo and in vivo. Infect Immun. 2015;83(8):3325–33.
pubmed: 26056379
pmcid: 4496593
doi: 10.1128/IAI.00430-15
Turton JF, Payne Z, Coward A, Hopkins KL, Turton JA, Doumith M, et al. Virulence genes in isolates of Klebsiella pneumoniae from the UK during 2016, including among carbapenemase gene-positive hypervirulent K1-ST23 and ‘non-hypervirulent’ types ST147, ST15 and ST383. J Med Microbiol. 2018;67(1):118–28.
pubmed: 29205138
doi: 10.1099/jmm.0.000653
Gu D, Dong N, Zheng Z, Lin D, Huang M, Wang L, et al. A fatal outbreak of ST11 carbapenem-resistant hypervirulent Klebsiella pneumoniae in a Chinese hospital: a molecular epidemiological study. Lancet Infect Dis. 2018;18(1):37–46.
pubmed: 28864030
doi: 10.1016/S1473-3099(17)30489-9
Furlan JPR, Savazzi EA, Stehling EG. Genomic insights into multidrug-resistant and hypervirulent Klebsiella pneumoniae co-harboring metal resistance genes in aquatic environments. Ecotoxicol Environ Saf. 2020;201:110782.
pubmed: 32497817
doi: 10.1016/j.ecoenv.2020.110782
Vincent JL, Sakr Y, Singer M, Martin-Loeches I, Machado FR, Marshall JC, et al. Prevalence and outcomes of infection among patients in intensive care units in 2017. JAMA. 2020;323(15):1478–87.
pubmed: 32207816
pmcid: 7093816
doi: 10.1001/jama.2020.2717
Edward EA, Mohamed NM, Zakaria AS. Whole genome characterization of the high-risk clone ST383 Klebsiella pneumoniae with a simultaneous carriage of bla
pubmed: 35744615
pmcid: 9228323
doi: 10.3390/microorganisms10061097
Tompkins K, van Duin D. Treatment for carbapenem-resistant Enterobacterales infections: recent advances and future directions. Eur J Clin Microbiol Infect Dis. 2021;40(10):2053–68.
pubmed: 34169446
pmcid: 8527571
doi: 10.1007/s10096-021-04296-1
Elrahem AA, El-Mashad N, Elshaer M, Ramadan H, Damiani G, Bahgat M, et al. Carbapenem resistance in Gram-negative bacteria: a hospital-based study in Egypt. Medicina. 2023;59(2):285.
pubmed: 36837486
pmcid: 9961035
doi: 10.3390/medicina59020285
Kazmierczak KM, Rabine S, Hackel M, McLaughlin RE, Biedenbach DJ, Bouchillon SK, et al. Multiyear, multinational survey of the incidence and global distribution of metallo-β-lactamase-producing Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2016;60(2):1067–78.
pubmed: 26643349
pmcid: 4750703
doi: 10.1128/AAC.02379-15
Yusof NY, Norazzman NII, Hakim S, Azlan MM, Anthony AA, Mustafa FH, et al. Prevalence of mutated colistin-resistant Klebsiella pneumoniae: a systematic review and meta-analysis. Trop Med Infect Dis. 2022;7(12):414.
pubmed: 36548669
pmcid: 9782491
doi: 10.3390/tropicalmed7120414
Binsker U, Kasbohrer A, Hammerl JA. Global colistin use: a review of the emergence of resistant Enterobacterales and the impact on their genetic basis. FEMS Microbiol Rev. 2022;46(1):fuab049.
pubmed: 34612488
doi: 10.1093/femsre/fuab049
Gogry FA, Siddiqui MT, Sultan I, Haq QMR. Current update on intrinsic and acquired colistin resistance mechanisms in bacteria. Front Med. 2021;8:677720.
doi: 10.3389/fmed.2021.677720
Uz Zaman T, Albladi M, Siddique MI, Aljohani SM, Balkhy HH. Insertion element mediated mgrB disruption and presence of ISKpn28 in colistin-resistant Klebsiella pneumoniae isolates from Saudi Arabia. Infect Drug Resist. 2018;11:1183–7.
pubmed: 30147346
pmcid: 6101004
doi: 10.2147/IDR.S161146
Li Z, Liu X, Lei Z, Li C, Zhang F, Wu Y, et al. Genetic diversity of polymyxin-resistance mechanisms in clinical isolates of carbapenem-resistant Klebsiella pneumoniae: a multicenter study in China. Microbiol Spectr. 2023;11(2):e05231-22.
pubmed: 36847569
pmcid: 10100843
doi: 10.1128/spectrum.05231-22
Yang T-Y, Wang S-F, Lin J-E, Griffith BTS, Lian S-H, Hong Z-D, et al. Contributions of insertion sequences conferring colistin resistance in Klebsiella pneumoniae. Int J Antimicrob Agents. 2020;55(3):105894.
pubmed: 31923567
doi: 10.1016/j.ijantimicag.2020.105894
da Silva DM, Faria-Junior C, Nery DR, de Oliveira PM, Silva LD, Alves EG, et al. Insertion sequences disrupting mgrB in carbapenem-resistant Klebsiella pneumoniae strains in Brazil. J Glob Antimicrob Resist. 2021;24:53–7.
pubmed: 33246210
doi: 10.1016/j.jgar.2020.11.003
de Araujo Longo LG, Fontana H, Santos de Sousa V, Chilinque Zambao da Silva N, Souto Martins I, Meurer Moreira B. Emergence of mgrB locus deletion mediating polymyxin resistance in pandemic KPC-producing Klebsiella pneumoniae ST15 lineage. J Med Microbiol. 2021;70(3):001309.
doi: 10.1099/jmm.0.001309
Cannatelli A, Giani T, D’Andrea MM, Di Pilato V, Arena F, Conte V, et al. MgrB inactivation is a common mechanism of colistin resistance in KPC-producing Klebsiella pneumoniae of clinical origin. Antimicrob Agents Chemother. 2014;58(10):5696–703.
pubmed: 25022583
pmcid: 4187966
doi: 10.1128/AAC.03110-14
Suzek BE, Ermolaeva MD, Schreiber M, Salzberg SL. A probabilistic method for identifying start codons in bacterial genomes. Bioinformatics. 2001;17(12):1123–30.
pubmed: 11751220
doi: 10.1093/bioinformatics/17.12.1123
Mills JP, Rojas LJ, Marshall SH, Rudin SD, Hujer AM, Nayak L, et al. Risk factors for and mechanisms of colistin resistanc among Enterobacterales: getting at the CORE of the issue. Open Forum Infect Dis. 2021;8(7):ofab145.
pubmed: 34285928
pmcid: 8286092
doi: 10.1093/ofid/ofab145
Arena F, Di Pilato V, Vannetti F, Fabbri L, Antonelli A, Coppi M, et al. Population structure of KPC carbapenemase-producing Klebsiella pneumoniae in a long-term acute-care rehabilitation facility: identification of a new lineage of clonal group 101, associated with local hyperendemicity. Microb Genom. 2020;6(1):e000308.
pubmed: 32003322
pmcid: 7067035
Zhao J, Li Z, Zhang Y, Liu X, Lu B, Cao B. Convergence of MCR-8.2 and chromosome-mediated resistance to colistin and tigecycline in an NDM-5-producing ST656 Klebsiella pneumoniae isolate from a lung transplant patient in China. Front Cell Infect Microbiol. 2022;12:922031.
pubmed: 35899054
pmcid: 9310643
doi: 10.3389/fcimb.2022.922031
Pragasam AK, Shankar C, Veeraraghavan B, Biswas I, Nabarro LE, Inbanathan FY, et al. Molecular mechanisms of colistin resistance in Klebsiella pneumoniae causing bacteremia from India—a first report. Front Microbiol. 2016;7:2135.
pubmed: 28119670
Wright MS, Suzuki Y, Jones MB, Marshall SH, Rudin SD, van Duin D, et al. Genomic and transcriptomic analyses of colistin-resistant clinical isolates of Klebsiella pneumoniae reveal multiple pathways of resistance. Antimicrob Agents Chemother. 2015;59(1):536–43.
pubmed: 25385117
doi: 10.1128/AAC.04037-14
Damjanova I, Jakab M, Urbán E, Farkas M, Juhász Á, Katona K, et al. Klebsiella pneumoniae ST525: the new high-risk multidrug-resistant epidemic clone in Hungary. Dissemination of ESBLs in Europe and beyond. Berlin: ESCMID eLibrary; 2013.
Teban-Man A, Farkas A, Baricz A, Hegedus A, Szekeres E, Pârvu M, et al. Wastewaters, with or without hospital contribution, harbour MDR, carbapenemase-producing, but not hypervirulent Klebsiella pneumoniae. Antibiotics. 2021;10(4):361.
pubmed: 33805405
pmcid: 8065489
doi: 10.3390/antibiotics10040361
Messaoudi A, Haenni M, Bouallègue O, Saras E, Chatre P, Chaouch C, et al. Dynamics and molecular features of OXA-48-like-producing Klebsiella pneumoniae lineages in a tunisian hospital. J Glob Antimicrob Resist. 2020;20:87–93.
pubmed: 31306816
doi: 10.1016/j.jgar.2019.07.005
Jamin C, Sanders BK, Zhou M, Costessi A, Duijsings D, Kluytmans JAJW, et al. Genetic analysis of plasmid-encoded mcr-1 resistance in Enterobacteriaceae derived from poultry meat in the Netherlands. JAC Antimicrob Resist. 2021;3(4):dlab156.
pubmed: 34806003
pmcid: 8597959
doi: 10.1093/jacamr/dlab156
Yang T, Li W, Cui Q, Qin X, Li B, Li X, et al. Distribution and transmission of colistin resistance genes mcr-1 and mcr-3 among nontyphoidal Salmonella isolates in China from 2011 to 2020. Microbiol Spectr. 2023;11(1):e0383322.
pubmed: 36519849
doi: 10.1128/spectrum.03833-22
Hammad AM, Hoffmann M, Gonzalez-Escalona N, Abbas NH, Yao K, Koenig S, et al. Genomic features of colistin resistant Escherichia coli ST69 strain harboring mcr-1 on IncHI2 plasmid from raw milk cheese in Egypt. Infect Genet Evol. 2019;73:126–31.
pubmed: 31029792
doi: 10.1016/j.meegid.2019.04.021
Sadek M, Ortiz de la Rosa JM, Abdelfattah Maky M, Korashe Dandrawy M, Nordmann P, Poirel L. Genomic features of MCR-1 and extended-spectrum beta-lactamase-producing Enterobacterales from retail raw chicken in Egypt. Microorganisms. 2021;9(1):195.
pubmed: 33477851
pmcid: 7832903
doi: 10.3390/microorganisms9010195
Zhang XF, Doi Y, Huang X, Li HY, Zhong LL, Zeng KJ, et al. Possible transmission of mcr-1-harboring Escherichia coli between companion animals and human. Emerg Infect Dis. 2016;22(9):1679–81.
pubmed: 27191649
pmcid: 4994340
doi: 10.3201/eid2209.160464
Trung NV, Matamoros S, Carrique-Mas JJ, Nghia NH, Nhung NT, Chieu TT, et al. Zoonotic transmission of mcr-1 colistin resistance gene from small-scale poultry farms, Vietnam. Emerg Infect Dis. 2017;23(3):529–32.
pubmed: 28221105
pmcid: 5382726
doi: 10.3201/eid2303.161553
Zhou Y, Farzana R, Sihalath S, Rattanavong S, Vongsouvath M, Mayxay M, et al. A one-health sampling strategy to explore the dissemination and relationship between colistin resistance in human, animal, and environmental sectors in Laos. Engineering. 2022;15:45–56.
doi: 10.1016/j.eng.2022.01.013
Collignon PJ, McEwen SA. One health—its importance in helping to better control antimicrobial resistance. Trop Med Infect Dis. 2019;4(1):22.
pubmed: 30700019
pmcid: 6473376
doi: 10.3390/tropicalmed4010022
Song Z, Qin Y, Peng Y, Huang M, Hua Y, Jiang H, et al. Carbapenem-resistant Klebsiella pneumoniae (CRKP) transfers conjugative plasmids containing bla
Ruan Z, Sun Q, Jia H, Huang C, Zhou W, Xie X, et al. Emergence of a ST2570 Klebsiella pneumoniae isolate carrying mcr-1 and bla
pubmed: 30771524
doi: 10.1016/j.cmi.2019.02.005
Lin Y-C, Kuroda M, Suzuki S, Mu J-J. Emergence of the mcr-1 colistin resistance gene in extended-spectrum β-lactamase-producing Klebsiella pneumoniae in Taiwan. J Glob Antimicrob Resist. 2021;24:278–84.
pubmed: 33484894
doi: 10.1016/j.jgar.2020.12.024
Ji X, Zheng B, Berglund B, Zou H, Sun Q, Chi X, et al. Dissemination of extended-spectrum β-lactamase-producing Escherichia coli carrying mcr-1 among multiple environmental sources in rural China and associated risk to human health. Environ Pollut. 2019;251:619–27.
pubmed: 31108295
doi: 10.1016/j.envpol.2019.05.002
Snesrud E, He S, Chandler M, Dekker JP, Hickman AB, McGann P, et al. A model for transposition of the colistin resistance gene mcr-1 by ISApl1. Antimicrob Agents Chemother. 2016;60(11):6973–6.
pubmed: 27620479
pmcid: 5075121
doi: 10.1128/AAC.01457-16