Spoilage markers for freshwater fish: A comprehensive workflow for non-targeted analysis of VOCs using DHS-GC-HRMS.
Dynamic headspace GC-MS
Fish spoilage
Freshwater fish
Volatile organic compounds (VOC)
Journal
Food research international (Ottawa, Ont.)
ISSN: 1873-7145
Titre abrégé: Food Res Int
Pays: Canada
ID NLM: 9210143
Informations de publication
Date de publication:
10 2023
10 2023
Historique:
received:
19
04
2023
revised:
06
06
2023
accepted:
09
06
2023
medline:
11
9
2023
pubmed:
10
9
2023
entrez:
10
9
2023
Statut:
ppublish
Résumé
Changes of volatile organic compounds (VOCs) patterns during 6 days of storage at +4 °C were investigated in different freshwater fish species, namely carp and trout, using dynamic headspace gas chromatography time-of-flight mass spectrometry (DHS-GC-TOFMS). DHS parameters were systematically optimized to establish optimum extraction and pre-concentration of VOCs. Moreover, different sample preparation methods were tested: mincing with a manual meat grinder, as well as mincing plus homogenization with a handheld homogenizer both without and with water addition. The addition of water during sample preparation led to pronounced changes of the volatile profiles, depending on the molecular structure and lipophilicity of the analytes, resulting in losses of up to 98 % of more lipophilic compounds (logP > 3). The optimized method was applied to trout and carp. Trout samples of different storage days were compared using univariate (Mann-Whitney U test, fold change calculation) and multivariate (OPLS-DA) statistics. 37 potential spoilage markers were selected; for 11 compounds identity could be confirmed via measurement of authentic standards and 10 compounds were identified by library spectrum match. 22 compounds were also found to be statistically significant spoilage markers in carp. Merging results of the different statistical approaches, the list of 37 compounds could be narrowed down to the 14 most suitable for trout spoilage assessment. This study comprises a systematic evaluation of the capabilities of DHS-GC coupled to high-resolution (HR) MS for studying spoilage in different freshwater fish species, including a comprehensive data evaluation workflow.
Identifiants
pubmed: 37689889
pii: S0963-9969(23)00668-3
doi: 10.1016/j.foodres.2023.113123
pii:
doi:
Substances chimiques
Volatile Organic Compounds
0
Water
059QF0KO0R
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
113123Informations de copyright
Copyright © 2023. Published by Elsevier Ltd.
Déclaration de conflit d'intérêts
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.