Nucleotide substitutions at the p.Gly117 and p.Thr180 mutational hot-spots of SKI alter molecular dynamics and may affect cell cycle.


Journal

Journal of human genetics
ISSN: 1435-232X
Titre abrégé: J Hum Genet
Pays: England
ID NLM: 9808008

Informations de publication

Date de publication:
12 Sep 2023
Historique:
received: 27 01 2023
accepted: 25 08 2023
revised: 22 08 2023
medline: 12 9 2023
pubmed: 12 9 2023
entrez: 11 9 2023
Statut: aheadofprint

Résumé

Heterozygous deleterious variants in SKI cause Shprintzen-Goldberg Syndrome, which is mainly characterized by craniofacial features, neurodevelopmental disorder and thoracic aorta dilatations/aneurysms. The encoded protein is a member of the transforming growth factor beta signaling. Paucity of reported studies exploring the SGS molecular pathogenesis hampers disease recognition and clinical interpretation of private variants. Here, the unpublished c.349G>A, p.[Gly117Ser] and the recurrent c.539C>T, p.[Thr180Met] SKI variants were studied combining in silico and in vitro approach. 3D comparative modeling and calculation of the interaction energy predicted that both variants alter the SKI tertiary protein structure and its interactions. Computational data were functionally corroborated by the demonstration of an increase of MAPK phosphorylation levels and alteration of cell cycle in cells expressing the mutant SKI. Our findings confirmed the effects of SKI variants on MAPK and opened the path to study the role of perturbations of the cell cycle in SGS.

Identifiants

pubmed: 37697026
doi: 10.1038/s10038-023-01193-7
pii: 10.1038/s10038-023-01193-7
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Ministry of Health, Italy | Agenzia Italiana del Farmaco, Ministero della Salute (Italian Medicines Agency)
ID : Ricerca Corrente 2022-2024 Program

Informations de copyright

© 2023. The Author(s), under exclusive licence to The Japan Society of Human Genetics.

Références

Shprintzen RJ, Goldberg RB. A recurrent pattern syndrome of craniosynostosis associated with arachnodactyly and abdominal hernias. J Craniofac Genet Dev Biol. 1982;2:65–74.
pubmed: 6182156
Greally MT, Adam MP, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, et al. editors. Shprintzen-Goldberg Syndrome. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993.2006 Jan 13 [updated 2020 Apr 9].
Arnaud P, Racine C, Hanna N, Thevenon J, Alessandri JL, Bonneau D, et al. A new mutational hotspot in the SKI gene in the context of MFS/TAA molecular diagnosis. Hum Genet. 2020;139:461–72.
doi: 10.1007/s00439-019-02102-9 pubmed: 31980905
Srivastava P, Shende S, Mandal K. Deciphering the Pathogenic Nature of Two de novo Sequence Variations in a Patient with Shprintzen-Goldberg Syndrome. Mol Syndromol. 2021;12:141–7.
doi: 10.1159/000514125 pubmed: 34177429 pmcid: 8215994
Shi J, Sun J, Chen Y, Zhu M, Wang Q, Lu C. et al. Analysis of phenotype and genetic variant in a family with Shprintzen-Goldberg syndrome. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2022;39:703–7.
pubmed: 35810425
Suzuki H, Yagi K, Kondo M, Kato M, Miyazono K, Miyazawa K. c-Ski inhibits the TGF-beta signaling pathway through stabilization of inactive Smad complexes on Smad-binding elements. Oncogene. 2004;23:5068–76.
doi: 10.1038/sj.onc.1207690 pubmed: 15107821
Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24.
doi: 10.1038/gim.2015.30 pubmed: 25741868 pmcid: 4544753
Doyle AJ, Doyle JJ, Bessling SL, Maragh S, Lindsay ME, Schepers D, et al. Mutations in the TGF-beta repressor SKI cause Shprintzen-Goldberg syndrome with aortic aneurysm. Nat Genet. 2012;44:1249–54.
doi: 10.1038/ng.2421 pubmed: 23023332 pmcid: 3545695
Gori I, George R, Purkiss AG, Strohbuecker S, Randall RA, Ogrodowicz R, et al. Mutations in SKI in Shprintzen-Goldberg syndrome lead to attenuated TGF-beta responses through SKI stabilization. Elife 2021;10:e63545.
doi: 10.7554/eLife.63545 pubmed: 33416497 pmcid: 7834018
Ueki N, Hayman MJ. Signal-dependent N-CoR requirement for repression by the Ski oncoprotein. J Biol Chem. 2003;278:24858–64.
doi: 10.1074/jbc.M303447200 pubmed: 12716897
Wu W, Wang X, Yu X, Lan HY. Smad3 signatures in renal inflammation and fibrosis. Int J Biol Sci. 2022;18:2795–806.
doi: 10.7150/ijbs.71595 pubmed: 35541902 pmcid: 9066101
Wilson JJ, Malakhova M, Zhang R, Joachimiak A, Hegde RS. Crystal structure of the dachshund homology domain of human SKI. Structure. 2004;12:785–92.
doi: 10.1016/j.str.2004.02.035 pubmed: 15130471
Miyazono KI, Ohno Y, Wada H, Ito T, Fukatsu Y, Kurisaki A, et al. Structural basis for receptor-regulated SMAD recognition by MAN1. Nucleic Acids Res. 2018;46:12139–53.
doi: 10.1093/nar/gky925 pubmed: 30321401 pmcid: 6294489
Kim SS, Zhang RG, Braunstein SE, Joachimiak A, Cvekl A, Hegde RS. Structure of the retinal determination protein Dachshund reveals a DNA binding motif. Structure. 2002;10:787–95.
doi: 10.1016/S0969-2126(02)00769-4 pubmed: 12057194
Thielen NGM, van der Kraan PM, van Caam APM. TGFbeta/BMP signaling pathway in cartilage homeostasis. Cells. 2019;8:969.
doi: 10.3390/cells8090969 pubmed: 31450621 pmcid: 6769927
Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L. The FoldX web server: an online force field. Nucleic Acids Res. 2005;33:W382–W388.
doi: 10.1093/nar/gki387 pubmed: 15980494 pmcid: 1160148
Huang SS, Huang JS. TGF-beta control of cell proliferation. J Cell Biochem. 2005;96:447–62.
doi: 10.1002/jcb.20558 pubmed: 16088940
Wallden K, Nyman T, Hallberg BM. SnoN stabilizes the SMAD3/SMAD4 protein complex. Sci Rep. 2017;7:46370.
doi: 10.1038/srep46370 pubmed: 28397834 pmcid: 5387736
Carrozzo R, Torraco A, Fiermonte G, Martinelli D, Di Nottia M, Rizza T, et al. Riboflavin responsive mitochondrial myopathy is a new phenotype of dihydrolipoamide dehydrogenase deficiency. The chaperon-like effect of vitamin B2. Mitochondrion. 2014;18:49–57.
doi: 10.1016/j.mito.2014.09.006 pubmed: 25251739
Pietropaolo A, Pierri CL, Palmieri F, Klingenberg M. The switching mechanism of the mitochondrial ADP/ATP carrier explored by free-energy landscapes. Biochim Biophys Acta. 2016;1857:772–81.
doi: 10.1016/j.bbabio.2016.02.006 pubmed: 26874054

Auteurs

Carmela Fusco (C)

Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy.

Grazia Nardella (G)

Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy.

Silvia Morlino (S)

Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy.

Lucia Micale (L)

Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy.

Vincenzo Tragni (V)

Laboratory of Biochemistry, Molecular, and Structural Biology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Bari, Italy.

Emanuele Agolini (E)

Laboratory of Medical Genetics, Fondazione IRCCS-Ospedale Pediatrico Bambino Gesù, Rome, Italy.

Antonio Novelli (A)

Laboratory of Medical Genetics, Fondazione IRCCS-Ospedale Pediatrico Bambino Gesù, Rome, Italy.

Stefania Massuras (S)

Department of Medical Genetics, University of Torino, Torino, Italy.

Vincenzo Giambra (V)

Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies [ISBReMIT], Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.

Ciro Leonardo Pierri (CL)

Laboratory of Biochemistry, Molecular, and Structural Biology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Bari, Italy.

Marco Castori (M)

Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy. m.castori@operapadrepio.it.

Classifications MeSH