Rinmaker: a fast, versatile and reliable tool to determine residue interaction networks in proteins.

Non-covalent bonds Protein 3D structure Residue interaction network (RIN)

Journal

BMC bioinformatics
ISSN: 1471-2105
Titre abrégé: BMC Bioinformatics
Pays: England
ID NLM: 100965194

Informations de publication

Date de publication:
11 Sep 2023
Historique:
received: 02 06 2023
accepted: 04 09 2023
medline: 13 9 2023
pubmed: 12 9 2023
entrez: 11 9 2023
Statut: epublish

Résumé

Residue Interaction Networks (RINs) map the crystallographic description of a protein into a graph, where amino acids are represented as nodes and non-covalent bonds as edges. Determination and visualization of a protein as a RIN provides insights on the topological properties (and hence their related biological functions) of large proteins without dealing with the full complexity of the three-dimensional description, and hence it represents an invaluable tool of modern bioinformatics. We present RINmaker, a fast, flexible, and powerful tool for determining and visualizing RINs that include all standard non-covalent interactions. RINmaker is offered as a cross-platform and open source software that can be used either as a command-line tool or through a web application or a web API service. We benchmark its efficiency against the main alternatives and provide explicit tests to show its performance and its correctness. RINmaker is designed to be fully customizable, from a simple and handy support for experimental research to a sophisticated computational tool that can be embedded into a large computational pipeline. Hence, it paves the way to bridge the gap between data-driven/machine learning approaches and numerical simulations of simple, physically motivated, models.

Sections du résumé

BACKGROUND BACKGROUND
Residue Interaction Networks (RINs) map the crystallographic description of a protein into a graph, where amino acids are represented as nodes and non-covalent bonds as edges. Determination and visualization of a protein as a RIN provides insights on the topological properties (and hence their related biological functions) of large proteins without dealing with the full complexity of the three-dimensional description, and hence it represents an invaluable tool of modern bioinformatics.
RESULTS RESULTS
We present RINmaker, a fast, flexible, and powerful tool for determining and visualizing RINs that include all standard non-covalent interactions. RINmaker is offered as a cross-platform and open source software that can be used either as a command-line tool or through a web application or a web API service. We benchmark its efficiency against the main alternatives and provide explicit tests to show its performance and its correctness.
CONCLUSIONS CONCLUSIONS
RINmaker is designed to be fully customizable, from a simple and handy support for experimental research to a sophisticated computational tool that can be embedded into a large computational pipeline. Hence, it paves the way to bridge the gap between data-driven/machine learning approaches and numerical simulations of simple, physically motivated, models.

Identifiants

pubmed: 37697267
doi: 10.1186/s12859-023-05466-y
pii: 10.1186/s12859-023-05466-y
pmc: PMC10496328
doi:

Substances chimiques

Amino Acids 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

336

Informations de copyright

© 2023. BioMed Central Ltd., part of Springer Nature.

Références

Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with alphafold. Nature. 2021;596(7873):583–9. https://doi.org/10.1038/s41586-021-03819-2 .
doi: 10.1038/s41586-021-03819-2 pubmed: 34265844 pmcid: 8371605
Tunyasuvunakool K, Adler J, Wu Z. Highly accurate protein structure prediction for the human proteome. Nature. 2021;596:590–6.
doi: 10.1038/s41586-021-03828-1 pubmed: 34293799 pmcid: 8387240
Baek MFD, Anishchenko I, et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science. 2021;373(6557):871–6. https://doi.org/10.1126/science.abj8754 .
doi: 10.1126/science.abj8754 pubmed: 34282049 pmcid: 7612213
Liang Z, Verkhivker GM, Hu G. Integration of network models and evolutionary analysis into high-throughput modeling of protein dynamics and allosteric regulation: theory, tools and applications. Brief Bioinform. 2019;21(3):815–35. https://doi.org/10.1093/bib/bbz029 .
doi: 10.1093/bib/bbz029
Clementel D, Del Conte A, Monzon AM, Camagni G, Minervini G, Piovesan D, Tosatto SCE. RING 3.0: fast generation of probabilistic residue interaction networks from structural ensembles. Nucleic Acids Res. 2022;50(W1):651–6.
doi: 10.1093/nar/gkac365
Martin AJ, Vidotto M, Boscariol F, Di Domenico T, Walsh I, Tosatto SC. RING: networking interacting residues, evolutionary information and energetics in protein structure. Bioinformatics. 2011;27(14):66.
doi: 10.1093/bioinformatics/btr191
Piovesan D, Minervini G, Tosatto S. The RING 2.0 web server for high quality residue interaction networks. Nucleic Acids Res. 2016;44(W1):66.
doi: 10.1093/nar/gkw315
Jubb HC, Higueruelo AP, Ochoa-Montaño B, et al. Arpeggio: a web server for calculating and visualising interatomic interactions in protein structures. J Mol Biol. 2017;429(3):365–71. https://doi.org/10.1016/j.jmb.2016.12.004 .
doi: 10.1016/j.jmb.2016.12.004 pubmed: 27964945 pmcid: 5282402
Contreras-Riquelme S, Garate JA, Perez-Acle T, Martin AJM. RIP-MD: a tool to study residue interaction networks in protein molecular dynamics. PeerJ. 2018;6:5998. https://doi.org/10.7717/peerj.5998 .
doi: 10.7717/peerj.5998
PDBe-Arpeggio. 2023. https://github.com/PDBeurope/arpeggio .
Toffano AA, Chiarot G, Zamuner S, Marchi M, Salvi E, Waxman SG, Faber CG, Lauria G, Giacometti A, Simeoni M. Computational pipeline to probe nav1. 7 gain-of-function variants in neuropathic painful syndromes. Sci Rep. 2020;10(1):17930.
doi: 10.1038/s41598-020-74591-y pubmed: 33087732 pmcid: 7578092
Alexandrescu A. Modern C++ design: generic programming and design patterns applied. Boston: Addison-Wesley; 2001.
Milton, S., Schmidt, H. Dynamic dispatch in object-oriented languages. Technical report, The Australian National University; 1994
Brandes U, Eiglsperger M, Herman I, et al. Graphml progress report: structural layer proposal. In: Springer-Verlag (ed.) Proceedings of the 9th international symposium graph drawing (GD’01) (LNCS 2265); 2002. p. 501–512.
Onofrio A, Parisi G, Punzi G, Todisco S, Di Noia MA, Bossis F, Turi A, De Grassi A, Pierri CL. Distance-dependent hydrophobic–hydrophobic contacts in protein folding simulations. Phys Chem Chem Phys. 2014;16:18907–17. https://doi.org/10.1039/C4CP01131G .
doi: 10.1039/C4CP01131G pubmed: 25083519
Chen Y, Zhou L, Tang Y, et al. Fast neighbor search by using revised k–d tree. Inf Sci. 2019;472:145–62. https://doi.org/10.1016/j.ins.2018.09.012 .
doi: 10.1016/j.ins.2018.09.012
Abrahams D, Gurtovoy A. C++ template metaprogramming: concepts, tools, and techniques from boost and beyond. 1st ed. London: Pearson Education; 2004.
Andrist B, Sehr V. C++ high performance: master the art of optimizing the functioning of your C++ code. 2nd ed. Birmingham: Packt Publishing Ltd; 2020.
Inc. G. Google Test Framework. 2022. http://google.github.io/googletest/ . Accessed 7 Dec 2022.
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The protein data bank. Nucleic Acids Res. 2000;28:66. https://doi.org/10.1093/nar/28.1.235 .
doi: 10.1093/nar/28.1.235
Zhou R. Trp-cage: folding free energy landscape in explicit water. Proc Natl Acad Sci. 2003;100(23):13280–5. https://doi.org/10.1073/pnas.2233312100 .
doi: 10.1073/pnas.2233312100 pubmed: 14581616 pmcid: 263783
Lee IH, Kim SY. Dynamic folding pathway models of the trp-cage protein. BioMed Res Int. 2013;2013:66. https://doi.org/10.1155/2013/973867 .
doi: 10.1155/2013/973867
Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79(2):926–35. https://doi.org/10.1063/1.445869 .
doi: 10.1063/1.445869
Huang J, MacKerell AD Jr. CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J Comput Chem. 2013;34(25):2135–45.
doi: 10.1002/jcc.23354 pubmed: 23832629 pmcid: 3800559
Andersen HC. Molecular dynamics simulations at constant pressure and/or temperature. J Chem Phys. 2008;72(4):2384–93. https://doi.org/10.1063/1.439486 .
doi: 10.1063/1.439486
Eastman P, Swails J, Chodera JD, McGibbon RT, Zhao Y, Beauchamp KA, Wang L-P, Simmonett AC, Harrigan MP, Stern CD, Wiewiora RP, Brooks BR, Pande VS. Openmm 7: rapid development of high performance algorithms for molecular dynamics. PLOS Comput Biol. 2017;13(7):1–17. https://doi.org/10.1371/journal.pcbi.1005659 .
doi: 10.1371/journal.pcbi.1005659
Foutch D, Pham B, Shen T. Protein conformational switch discerned via network centrality properties. Comput Struct Biotechnol J. 2021;19:3599–608. https://doi.org/10.1016/j.csbj.2021.06.004 .
doi: 10.1016/j.csbj.2021.06.004 pubmed: 34257839 pmcid: 8246261
Hagberg A, Swart P, Chult SD. Exploring network structure, dynamics, and function using networkx. Technical report, Los Alamos National Lab.(LANL), Los Alamos; 2008.
Kannan S, Zacharias M. Role of tryptophan side chain dynamics on the trp-cage mini-protein folding studied by molecular dynamics simulations. PLoS ONE. 2014;9(2):1–12. https://doi.org/10.1371/journal.pone.0088383 .
doi: 10.1371/journal.pone.0088383
Wu X, Yang G, Zu Y, Fu Y, Zhou L, Yuan X. Molecular dynamics characterisations of the trp-cage folding mechanisms: in the absence and presence of water solvents. Mol Simul. 2012;38(2):161–71. https://doi.org/10.1080/08927022.2011.610795 .
doi: 10.1080/08927022.2011.610795
Paschek D, Hempel S, García AE. Computing the stability diagram of the trp-cage miniprotein. Proc Natl Acad Sci. 2008;105(46):17754–9. https://doi.org/10.1073/pnas.0804775105 .
doi: 10.1073/pnas.0804775105
Williams C, Richardson D, Richardson J. High quality protein residues: top2018 mainchain- filtered residues. Zenodo. 2021. https://doi.org/10.5281/zenodo.5777651 .
doi: 10.5281/zenodo.5777651
O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open babel: an open chemical toolbox. J Cheminform. 2011;3(1):33. https://doi.org/10.1186/1758-2946-3-33 .
doi: 10.1186/1758-2946-3-33 pubmed: 21982300 pmcid: 3198950
Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983;22(12):2577–637. https://doi.org/10.1002/bip.360221211 .
doi: 10.1002/bip.360221211 pubmed: 6667333
XRmol. 2023. https://xrmol.dais.unive.it .
Corazza S, Pittarello F, Simeoni M. 3d molecules visualization with XRmol: an AR web tool for mobile devices. In: Springer (ed) 20th EuroXR international conference—EuroXR 2023, lecture notes in computer science. Accepted for publication; 2023.
Franke L, Peter C. Visualizing the residue interaction landscape of proteins by temporal network embedding. J Chem Theor Comput. 2023;19(10):2985–95. https://doi.org/10.1021/acs.jctc.2c01228 .
doi: 10.1021/acs.jctc.2c01228

Auteurs

Alvise Spanò (A)

Department of Environmental Science, Computer Science and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30172, Venice, Italy.

Lorenzo Fanton (L)

Department of Environmental Science, Computer Science and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30172, Venice, Italy.

Davide Pizzolato (D)

Department of Environmental Science, Computer Science and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30172, Venice, Italy.

Jacopo Moi (J)

Department of Molecular Science and Nanosystems, University Ca' Foscari of Venice, Via Torino 155, 30172, Venice, Italy.

Francesco Vinci (F)

Department of Environmental Science, Computer Science and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30172, Venice, Italy.

Alberto Pesce (A)

Department of Environmental Science, Computer Science and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30172, Venice, Italy.

Cedrix J Dongmo Foumthuim (CJ)

Department of Molecular Science and Nanosystems, University Ca' Foscari of Venice, Via Torino 155, 30172, Venice, Italy.

Achille Giacometti (A)

Department of Molecular Science and Nanosystems, University Ca' Foscari of Venice, Via Torino 155, 30172, Venice, Italy.
European Centre for Living Technology (ECLT), Dorsoduro 3246, 30123, Venice, Italy.

Marta Simeoni (M)

Department of Environmental Science, Computer Science and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30172, Venice, Italy. simeoni@unive.it.
European Centre for Living Technology (ECLT), Dorsoduro 3246, 30123, Venice, Italy. simeoni@unive.it.

Articles similaires

Selecting optimal software code descriptors-The case of Java.

Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov et al.
1.00
Software Algorithms Programming Languages

Exploring blood-brain barrier passage using atomic weighted vector and machine learning.

Yoan Martínez-López, Paulina Phoobane, Yanaima Jauriga et al.
1.00
Blood-Brain Barrier Machine Learning Humans Support Vector Machine Software

Understanding the role of machine learning in predicting progression of osteoarthritis.

Simone Castagno, Benjamin Gompels, Estelle Strangmark et al.
1.00
Humans Disease Progression Machine Learning Osteoarthritis
Cephalometry Humans Anatomic Landmarks Software Internet

Classifications MeSH