Expression of tight junction proteins in smokers and non-smokers with generalized Stage III periodontitis.
barrier function
periodontitis
smoking
tight junction proteins
Journal
Journal of periodontal research
ISSN: 1600-0765
Titre abrégé: J Periodontal Res
Pays: United States
ID NLM: 0055107
Informations de publication
Date de publication:
Dec 2023
Dec 2023
Historique:
revised:
22
08
2023
received:
01
04
2023
accepted:
01
09
2023
medline:
15
11
2023
pubmed:
12
9
2023
entrez:
12
9
2023
Statut:
ppublish
Résumé
This study aims to evaluate the gingival crevicular fluid (GCF) levels of tumor necrosis factor-α (TNF-α), zonula occludens-1 (ZO-1), occludin (Occ), and tricellulin (Tric) in periodontitis, as well as their alterations due to smoking. Tight junctions (TJ), which consist of transmembrane and cytoplasmic scaffolding proteins, connect the epithelial cells of the periodontium. Occ, claudins, junctional adhesion molecules, and Tric are transmembrane TJ proteins found at the cell membrane. The transmembrane TJ proteins and the intracellular cytoskeleton are directly linked by cytoplasmic scaffolding proteins such as ZO-1. Although the functions and locations of these molecules have been defined, their behavior in periodontal inflammation is unknown. The study included four groups: individuals with periodontal health without smoking (C; n = 31), individuals with generalized Stage III periodontitis without smoking (P; n = 28), individuals with periodontal health while smoking (CS; n = 22), and individuals with generalized Stage III periodontitis while smoking (PS; n = 18). Clinical periodontal parameters were recorded, and enzyme-linked immunosorbent assay (ELISA) was used to examine ZO-1, Occ, Tric, and TNF-α levels in GCF. In the periodontitis groups, clinical parameters were significantly higher (p < .001). The site-specific levels of TNF-α, ZO-1, Tric, and Occ in the P group were statistically higher than those in the other groups (p < .05). TNF-α, probing pocket depth (PPD), and bleeding on probing (BOP) exhibited positive correlations with all TJ proteins (p < .005). Smoking could potentially affect the levels of epithelial TJ proteins in the GCF, thereby potentially playing a significant role in the pathogenesis of the periodontal disease.
Sections du résumé
OBJECTIVE
OBJECTIVE
This study aims to evaluate the gingival crevicular fluid (GCF) levels of tumor necrosis factor-α (TNF-α), zonula occludens-1 (ZO-1), occludin (Occ), and tricellulin (Tric) in periodontitis, as well as their alterations due to smoking.
BACKGROUND
BACKGROUND
Tight junctions (TJ), which consist of transmembrane and cytoplasmic scaffolding proteins, connect the epithelial cells of the periodontium. Occ, claudins, junctional adhesion molecules, and Tric are transmembrane TJ proteins found at the cell membrane. The transmembrane TJ proteins and the intracellular cytoskeleton are directly linked by cytoplasmic scaffolding proteins such as ZO-1. Although the functions and locations of these molecules have been defined, their behavior in periodontal inflammation is unknown.
METHODS
METHODS
The study included four groups: individuals with periodontal health without smoking (C; n = 31), individuals with generalized Stage III periodontitis without smoking (P; n = 28), individuals with periodontal health while smoking (CS; n = 22), and individuals with generalized Stage III periodontitis while smoking (PS; n = 18). Clinical periodontal parameters were recorded, and enzyme-linked immunosorbent assay (ELISA) was used to examine ZO-1, Occ, Tric, and TNF-α levels in GCF.
RESULTS
RESULTS
In the periodontitis groups, clinical parameters were significantly higher (p < .001). The site-specific levels of TNF-α, ZO-1, Tric, and Occ in the P group were statistically higher than those in the other groups (p < .05). TNF-α, probing pocket depth (PPD), and bleeding on probing (BOP) exhibited positive correlations with all TJ proteins (p < .005).
CONCLUSIONS
CONCLUSIONS
Smoking could potentially affect the levels of epithelial TJ proteins in the GCF, thereby potentially playing a significant role in the pathogenesis of the periodontal disease.
Substances chimiques
Tumor Necrosis Factor-alpha
0
Tight Junction Proteins
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1281-1289Informations de copyright
© 2023 The Authors. Journal of Periodontal Research published by John Wiley & Sons Ltd.
Références
Fiorellini JP, Stathopoulou PG. Anatomy of the periodontium. In: Newman MG, Takei H, Klokkevold PR, eds. Carranza's Clinical Periodontology. 12th ed. W.B. Saunders Co.; 2014:9-39.
Vitkov L, Singh J, Schauer C, et al. Breaking the gingival barrier in periodontitis. Int J Mol Sci. 2023;24(5):4544. doi:10.3390/ijms24054544
Nusrat A, Turner JR, Madara JL. Molecular physiology and pathophysiology of tight junctions. IV. Regulation of tight junctions by extracellular stimuli: nutrients, cytokines, and immune cells. Am J Physiol Gastrointest Liver Physiol. 2000;279:851-857. doi:10.1152/ajpgi.2000.279.5.G851
Ye P, Chapple CC, Kumar RK, Hunter N. Expression patterns of E-cadherin, involucrin, and connexin gap junction proteins in the lining epithelia of inflamed gingiva. J Pathol. 2000;192(1):58-66.
Ye P. Modulation of epithelial tight junctions by TGF-beta 3 in cultured oral epithelial cells. Aust Dent J. 2012;57(1):11-17. doi:10.1111/j.1834-7819.2011.01651.x
Paradis T, Bègue H, Basmaciyan L, Dalle F, Bon F. Tight junctions as a key for pathogens invasion in intestinal epithelial cells. Int J Mol Sci. 2021;22(5):2506. doi:10.3390/ijms22052506
Damek-Poprawa M, Korostoff J, Gill R, DiRienzo JM. Cell junction remodeling in gingival tissue exposed to a microbial toxin. J Dent Res. 2013;92:518-523. doi:10.1177/0022034513486807
Katz J, Yang QB, Zhang P, et al. Hydrolysis of epithelial junctional proteins by P. gingivalis gingipains. Infect Immun. 2002;70:2512-2518. doi:10.1128/IAI.70.5.2512-2518.2002
Ellen RP, Ko KS, Lo CM, Grove DA, Ishihara K. Insertional inactivation of the prtP gene of Treponema denticola confirms dentilisin's disruption of epithelial junctions. J Mol Microbiol Biotechnol. 2000;2:516-518.
Capaldo CT, Nusrat A. Cytokine regulation of tight junctions. Biochim Biophys Acta. 2009;1788:864-871. doi:10.1016/j.bbamem.2008.08.027
Bauer H, Zweimueller-Mayer J, Steinbacher P, Lametschwandtner A, Bauer HC. The dual role of zonula occludens (ZO) proteins. J Biomed Biotechnol. 2010;2010:402593. doi:10.1155/2010/402593
Furuse M, Hirase T, Itoh M, et al. Occludin a novel integral membrane protein localizing at tight junctions. J Cell Biol. 1993;123(6):1777-1788. doi:10.1083/jcb.123.6.1777
Ikenouchi J, Furuse M, Furuse K, Sasaki JH, Tsukita S, Tsukita S. Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. J Cell Biol. 2005;171:939-945. doi:10.1083/jcb.200510043
Heller F, Florian P, Bojarski C, et al. Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology. 2005;129:550-564. doi:10.1016/j.gastro.2005.05.002
Van Itallie CM, Fanning AS, Bridges A, Anderson JM. ZO-1 stabilizes the tight junction solute barrier through coupling to the perijunctional cytoskeleton. Mol Biol Cell. 2009;20:3930-3940. doi:10.1091/mbc.e09-04-0320
Balda MS, Flores-Maldonado C, Cereijido M, Matter K. Multiple domains of occludin are involved in the regulation of paracellular permeability. J. Cell Biochem. 2000;78:85-96.
Mankertz J, Tavalali S, Schmitz H, et al. Expression from the human occludin promoter is affected by tumor necrosis factor alpha and interferon gamma. J Cell Sci. 2000;113:2085-2090. doi:10.1242/jcs.113.11.2085
Wang F, Graham WV, Wang Y, Witkowski ED, Schwarz BT, Turner JR. Interferon-gamma and tumor necrosis factor-alpha synergize to induce intestinal epithelial barrier dysfunction by upregulating myosin light chain kinase expression. Am J Pathol. 2005;166:409-419. doi:10.1016/s0002-9440(10)62264-x
Olivera D, Knallb C, Boggsa S, Seagravec JC. Cytoskeletal modulation and tyrosine phosphorylation of tight junction proteins are associated with mainstream cigarette smoke-induced permeability of airway epithelium. Exp Toxicol Pathol. 2010;62(2):133-143. doi:10.1016/j.etp.2009.03.002
Rao RK, Basuroy S, Rao VU, Karnaky KJ Jr, Gupta A. Tyrosine phosphorylation and dissociation of occludin-ZO-1 and E-cadherin-beta-catenin complexes from the cytoskeleton by oxidative stress. Biochem J. 2002;368:471-481. doi:10.1042/BJ20011804
Tonetti MS, Greenwell H, Kornman KS. Staging and grading of periodontitis: framework and proposal of a new classification and case definition. J Periodontol. 2018;89(1):159-172. doi:10.1111/jcpe.12945
Varghese J, Bhat V, Chianeh YR, Kamath V, Al-Haj Husain N, Özcan M. Salivary 8-hydroxyguanosine levels in smokers and non-smokers with chronic periodontitis. Odontology. 2020;108(4):569-577. doi:10.1007/s10266-020-00496-x
Loe H, Holm-Pedersen P. Absence and presence of fluid from normal and inflamed gingivae. Periodontics. 1965;3:171-177.
Lamster IB, Oshrain RL, Gordon JM. Enzyme activity in human gingival crevicular fluid: considerations in data reporting based on analysis of individual crevicular sites. J Clin Periodontol. 1986;13:799-804.
Akkaya HU, Yilmaz HE, Narin F, Saglam M. Evaluation of galectin-3, peptidylarginine deiminase-4, and tumor necrosis factor-alpha levels in gingival crevicular fluid for periodontal health, gingivitis, and Stage III Grade C periodontitis: a pilot study. J Periodontol. 2022;93:80-88.
Chapple IL, Matthews JB, Thorpe GHG, Glenwright HD, Smith JM, Saxby M. A new ultrasensitive chemiluminescent assay for the site-specific quantification of alkaline phosphatase in gingival crevicular fluid. J Periodontal Res. 1993;28(4):266-273.
Turner JR. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol. 2009;9(11):799-809. doi:10.1038/nri2653
König J, Wells J, Cani PD, et al. Human intestinal barrier function in health and disease. Clin Transl Gastroenterol. 2016;7(10):e196. doi:10.1038/ctg.2016.54
Bradley JR. TNF-mediated inflammatory disease. J Pathol. 2008;214:149-160. doi:10.1002/path.2287
Zhang Q, Chen B, Zhu D, Yan F. Biomarker levels in gingival crevicular fluid of subjects with different periodontal conditions: a cross-sectional study. Arch Oral Biol. 2016;72:92-98. doi:10.1016/j.archoralbio.2016.08.020
Lagha AB, Grenier D. Tea polyphenols protect gingival keratinocytes against TNF-α-induced tight junction barrier dysfunction and attenuate the inflammatory response of monocytes/macrophages. Cytokine. 2019;115:64-75. doi:10.1016/j.cyto.2018.12.009
Fujita T, Yumoto H, Shiba H, et al. Irsogladine maleate regulates epithelial barrier function in tumor necrosis factor-α-stimulated human gingival epithelial cells. J Periodontal Res. 2012;47(1):55-61. doi:10.1111/j.1600-0765.2011.01404.x
Choi YS, Baek K, Choi Y. Estrogen reinforces barrier formation and protects against tumor necrosis factor alpha-induced barrier dysfunction in oral epithelial cells. J Periodontal Implant Sci. 2018;48(5):284-294. doi:10.5051/jpis.2018.48.5.284
Ma TY, Iwamoto GK, Hoa NT, et al. TNF-alpha-induced increase in intestinal epithelial tight junction permeability requires NF-kappa B activation. Am J Physiol Gastrointest Liver Physiol. 2004;286:G367-G376. doi:10.1152/ajpgi.00173.2003
Hajishengallis G. Immunomicrobial pathogenesis of periodontitis: keystones, pathobionts, and host response. Trends Immunol. 2014;35:3-11. doi:10.1016/j.it.2013.09.001
Tribble GD, Lamont RJ. Bacterial invasion of epithelial cells and spreading in periodontal tissue. Periodontol. 2010;52:68-83. doi:10.1111/j.1600-0757.2009.00323.x
Furuse M, Itoh M, Hirose T, et al. Direct association of occludin and ZO-1 and in possible involvement in thelocalization of occludin at tight junctions. J Cell Biol. 1994;127:1617-1626. doi:10.1083/jcb.127.6.1617
Saitou M, Furuse M, Sasaki H. Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell. 2000;11:4131-4142. doi:10.1091/mbc.11.12.4131
Bercier P, Grenier D. TNF-α disrupts the integrity of the porcine respiratory epithelial barrier. Res Vet Sci. 2019;124:13-17. doi:10.1016/j.rvsc.2019.01.029
Chen W, Alshaikh A, Kim S, et al. Porphyromonas gingivalis impairs oral epithelial barrier through targeting GRHL2. J Dent Res. 2019;98(10):1150-1158. doi:10.1177/0022034519865184
Groeger S, Doman E, Chakraborty T, Meyle J. Effects of Porphyromonas gingivalis infection on human gingival epithelial barrier function in vitro. Eur J Oral Sci. 2010;118(6):582-589. doi:10.1111/j.1600-0722.2010.00782.x
Xu R, Feng X, Xie X, Zhang J, Wu D, Xu L. HIV-1 tat protein increases the permeability of brain endothelial cells by both inhibiting occludin expression and cleaving occludin via matrix metalloproteinase-9. Brain Res. 2012;1436:13-19. doi:10.1016/j.brainres.2011.11.052
Grossi SG, Genco RJ, Machtei EE. Assessment of risk for periodontal disease. Risk indicators for alveoler bone loss. J Periodontol. 1995;66:23-29. doi:10.1902/jop.1995.66.1.23
da Silva RVC, Rangel TP, Corrêa MG, et al. Smoking negatively impacts the clinical, microbiological, and immunological treatment response of young adults with Grade C periodontitis. J Periodontal Res. 2022;57(6):1116-1126. doi:10.1111/jre.13049
He CY, Gao XQ, Jiang LP. The impact of smoking on levels of chronic periodontitis-associated biomarkers. Exp Mol Pathol. 2016;101(1):110-115. doi:10.1016/j.yexmp.2016.07.004
Souto GR, Queiroz-Junior CM, Costa FO, Mesquita RA. Effect of smoking on immunity in human chronic periodontitis. Immunobiology. 2014;219(12):909-915. doi:10.1016/j.imbio.2014.08.003
Fredriksson M, Bergström K, Asman B. IL-8 and TNF-alpha from peripheral neutrophils and acute-phase proteins in periodontitis. J Clin Periodontol. 2002;29(2):123-128. doi:10.1034/j.1600-051x.2002.290206.x
Li Q, Zhou XD, Kolosov VP, Perelman JM. Nicotine reduces TNF-α expression through a α7 nAChR/MyD88/NF-ĸB pathway in HBE16 airway epithelial cells. Cell Physiol Biochem. 2011;27(5):605-612. doi:10.1159/000329982
Silverstein P. Smoking and wound healing. Am J Med. 1992;93(1A):22S-24S. doi:10.1016/0002-9343(92)90623-j
Bouclin R, Landry RG, Noreau G. The effects of smoking on periodontal structures: a literature review. J Can Dent Assoc. 1997;63:356-360.
Greene CM, Ramsay H, Wells RJ, O’Neill SJ, McElvaney NG. Inhibition of Toll-like receptor 2-mediated interleukin-8 production in cystic fibrosis airway epithelial cells via the alpha7-nicotinic acetylcholine receptor. Mediators Inflamm. 2010;2010:423241. doi:10.1155/2010/423241
Jones JG, Minty BD, Lawler P, Hulands G, Crawley JC, Veall N. Increased alveolar epithelial permeability in cigarette smokers. Lancet. 1980;1(8159):66-68. doi:10.1016/s0140-6736(80)90493-6
Staddon JM, Herrenknecht K, Smales C, Rubin LL. Evidence that tyrosine phosphorylation may increase tight junction permeability. J Cell Sci. 1995;108:609-619. doi:10.1242/jcs.108.2.609
Tsukamoto T, Nigam SK. Role of tyrosine phosphorylation in the reassembly of occludin and other tight junction proteins. Am J Physiol. 1999;276:F737-F750. doi:10.1152/ajprenal.1999.276.5.F737
Ward PD, Klein RR, Troutman MD, Desai S, Thakker DR. Phospholipase C-gamma modulates epithelial tight junction permeability through hyperphosphorylation of tight junction proteins. J Biol Chem. 2002;277(38):35760-35765. doi:10.1074/jbc.M203134200
Collares-Buzato CB, Jepson MA, Simmons NL, Hirst BH. Increased tyrosine phosphorylation causes redistribution of adherens junction and tight junction proteins and perturbs paracellular barrier function in MDCK epithelia. Eur J Cell Biol. 1998;76(2):85-92. doi:10.1016/S0171-9335(98)80020-4
Kale G, Naren AP, Sheth P, Rao RK. Tyrosine phosphorylation of occludin attenuates its interactions with ZO-1, ZO-2, and ZO-3. Biochem Biophys Res Commun. 2003;302(2):324-329. doi:10.1016/s0006-291x(03)00167-0
Nakatsu D, Kano F, Shinozaki-Narikawa N, Murata M. Pyk2-dependent phosphorylation of LSR enhances localization of LSR and tricellulin at tricellular tight junctions. PLoS One. 2019;14:e0223300.