Detection of equine herpesvirus-1 (EHV-1) in urine samples during outbreaks of equine herpesvirus myeloencephalopathy.

EHV-1 PCR diagnosis horse outbreak urine

Journal

Equine veterinary journal
ISSN: 2042-3306
Titre abrégé: Equine Vet J
Pays: United States
ID NLM: 0173320

Informations de publication

Date de publication:
12 Sep 2023
Historique:
received: 17 05 2023
accepted: 17 08 2023
medline: 13 9 2023
pubmed: 13 9 2023
entrez: 12 9 2023
Statut: aheadofprint

Résumé

Real-time PCR is the diagnostic technique of choice for the diagnosis and control of equine herpesvirus-1 (EHV-1) in an outbreak setting. The presence of EHV-1 in nasal swabs (NS), whole blood, brain and spinal cord samples has been extensively described; however, there are no reports on the excretion of EHV-1 in urine, its DNA detection patterns, and the role of urine in viral spread during an outbreak. To determine the presence of EHV-1 DNA in urine during natural infection and to compare the DNA detection patterns of EHV-1 in urine, buffy coat (BC) and NS. Descriptive study of natural infection. Urine and whole blood/NS samples were collected at different time points during the hospitalisation of 21 horses involved in two EHV-1 myeloencephalopathy outbreaks in 2021 and 2023 in Spain. Quantitative real-time PCR was performed to compare the viral DNA load between BC-urine samples in 2021 and NS-urine samples in 2023. Sex, age, breed, presence of neurological signs, EHV-1 vaccination status and treatment data were recorded for all horses. A total of 18 hospitalised horses during the 2021 and 2023 outbreaks were positive for EHV-1, and viral DNA was detected in urine samples from a total of 11 horses in both outbreaks. Compared with BC samples, DNA presence was detected in urine samples for longer duration and with slightly higher concentration; however, compared with NS, detection of EHV-1 in urine was similar in duration with lower DNA concentrations. Limited sample size, different sampling times and protocols (BC vs. NS) in two natural infection outbreak settings. EHV-1 was detected in the urine from naturally infected horses. Urine should be considered as complimentary to blood and NS in diagnosis of EHV-1 infection. PCR en tiempo real es la técnica diagnostica de preferencia para el diagnóstico y control del herpes virus equino-1 (EHV-1) en una situación de brote. La presencia de EHV-1 en torulas nasales (TN), muestras de sangre entera, cerebro, y medula espinal ha sido descrita en forma extensa; sin embargo, no hay informes de excreción de EHV-1 en orina, la detección del patrón de ADN, y el rol de la orina en la propagación vírica durante un brote. Determinar la presencia de ADN de EHV-1 en muestras de orina durante un brote infeccioso natural y comparar los patrones de detección de ADN de EHV-1 en orina, capa leucocitaria (CL) y TN. DISEÑO DEL ESTUDIO: Estudio prospectivo en una infección natural en caballos hospitalizados. MÉTODOS: Muestras de orina y sangre entera/TN fueron recolectadas a distintos tiempos durante la hospitalización de veintiún caballos involucrados en dos brotes de mielo encefalopatía por EHV-1 en 2021 y 2023 en España. PCR a tiempo real cuantitativo fue llevado a cabo para comparar la carga de ADN viral entre muestras de CL-orina en 2021 y muestras TN-orina en 2023. Sexo, edad, raza, presencia de síntomas neurológicos, estatus de vacunación y datos de tratamiento fueron anotados para todos los caballos. Un total de diez y ocho caballos hospitalizados durante los brotes de 2021 y 2023 resultaron positivos a EHV-1, y ADN viral fue detectado en muestras de orina en un total de 11 caballos de ambos brotes. En comparación a muestras de CL, la presencia de AND fue detectado por mas largo tiempo y con una concentración ligeramente mas alta; sin embargo, en comparación a TN, la detección de EHV-1 en orina fue similar en tiempo pero demostró menor concentración de ADN. Tamaño de muestra limitado, tiempos de muestreo diferentes, y de protocolos (CL vs. TN) en dos situaciones de brotes naturales. Se detecto EHV-1 en orina de caballos infectados naturalmente. La recolección, no invasive, de orina debería considerarse como un complemento a las muestras de sangre y TN en el control de caballos infectados en situaciones de brote.

Sections du résumé

BACKGROUND BACKGROUND
Real-time PCR is the diagnostic technique of choice for the diagnosis and control of equine herpesvirus-1 (EHV-1) in an outbreak setting. The presence of EHV-1 in nasal swabs (NS), whole blood, brain and spinal cord samples has been extensively described; however, there are no reports on the excretion of EHV-1 in urine, its DNA detection patterns, and the role of urine in viral spread during an outbreak.
OBJECTIVES OBJECTIVE
To determine the presence of EHV-1 DNA in urine during natural infection and to compare the DNA detection patterns of EHV-1 in urine, buffy coat (BC) and NS.
STUDY DESIGN METHODS
Descriptive study of natural infection.
METHODS METHODS
Urine and whole blood/NS samples were collected at different time points during the hospitalisation of 21 horses involved in two EHV-1 myeloencephalopathy outbreaks in 2021 and 2023 in Spain. Quantitative real-time PCR was performed to compare the viral DNA load between BC-urine samples in 2021 and NS-urine samples in 2023. Sex, age, breed, presence of neurological signs, EHV-1 vaccination status and treatment data were recorded for all horses.
RESULTS RESULTS
A total of 18 hospitalised horses during the 2021 and 2023 outbreaks were positive for EHV-1, and viral DNA was detected in urine samples from a total of 11 horses in both outbreaks. Compared with BC samples, DNA presence was detected in urine samples for longer duration and with slightly higher concentration; however, compared with NS, detection of EHV-1 in urine was similar in duration with lower DNA concentrations.
MAIN LIMITATIONS CONCLUSIONS
Limited sample size, different sampling times and protocols (BC vs. NS) in two natural infection outbreak settings.
CONCLUSIONS CONCLUSIONS
EHV-1 was detected in the urine from naturally infected horses. Urine should be considered as complimentary to blood and NS in diagnosis of EHV-1 infection.
HISTORIAL UNASSIGNED
PCR en tiempo real es la técnica diagnostica de preferencia para el diagnóstico y control del herpes virus equino-1 (EHV-1) en una situación de brote. La presencia de EHV-1 en torulas nasales (TN), muestras de sangre entera, cerebro, y medula espinal ha sido descrita en forma extensa; sin embargo, no hay informes de excreción de EHV-1 en orina, la detección del patrón de ADN, y el rol de la orina en la propagación vírica durante un brote.
OBJETIVOS OBJECTIVE
Determinar la presencia de ADN de EHV-1 en muestras de orina durante un brote infeccioso natural y comparar los patrones de detección de ADN de EHV-1 en orina, capa leucocitaria (CL) y TN. DISEÑO DEL ESTUDIO: Estudio prospectivo en una infección natural en caballos hospitalizados. MÉTODOS: Muestras de orina y sangre entera/TN fueron recolectadas a distintos tiempos durante la hospitalización de veintiún caballos involucrados en dos brotes de mielo encefalopatía por EHV-1 en 2021 y 2023 en España. PCR a tiempo real cuantitativo fue llevado a cabo para comparar la carga de ADN viral entre muestras de CL-orina en 2021 y muestras TN-orina en 2023. Sexo, edad, raza, presencia de síntomas neurológicos, estatus de vacunación y datos de tratamiento fueron anotados para todos los caballos.
RESULTADOS RESULTS
Un total de diez y ocho caballos hospitalizados durante los brotes de 2021 y 2023 resultaron positivos a EHV-1, y ADN viral fue detectado en muestras de orina en un total de 11 caballos de ambos brotes. En comparación a muestras de CL, la presencia de AND fue detectado por mas largo tiempo y con una concentración ligeramente mas alta; sin embargo, en comparación a TN, la detección de EHV-1 en orina fue similar en tiempo pero demostró menor concentración de ADN.
LIMITACIONES PRINCIPALES UNASSIGNED
Tamaño de muestra limitado, tiempos de muestreo diferentes, y de protocolos (CL vs. TN) en dos situaciones de brotes naturales.
CONCLUSIONES CONCLUSIONS
Se detecto EHV-1 en orina de caballos infectados naturalmente. La recolección, no invasive, de orina debería considerarse como un complemento a las muestras de sangre y TN en el control de caballos infectados en situaciones de brote.

Autres résumés

Type: Publisher (spa)
PCR en tiempo real es la técnica diagnostica de preferencia para el diagnóstico y control del herpes virus equino-1 (EHV-1) en una situación de brote. La presencia de EHV-1 en torulas nasales (TN), muestras de sangre entera, cerebro, y medula espinal ha sido descrita en forma extensa; sin embargo, no hay informes de excreción de EHV-1 en orina, la detección del patrón de ADN, y el rol de la orina en la propagación vírica durante un brote.

Identifiants

pubmed: 37699794
doi: 10.1111/evj.14007
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2023 The Authors. Equine Veterinary Journal published by John Wiley & Sons Ltd on behalf of EVJ Ltd.

Références

Kydd JH, Smith KC. Equine herpesvirus neurological disease: reflections from across the pond. J Vet Intern Med. 2006;20:467-468.
Patel JR, Heldens J. Equine herpesviruses 1 (EHV-1) and 4 (EHV-4)-epidemiology, disease and immunoprophylaxis: a brief review. Vet J. 1997;2005(170):14-23.
Lunn DP, Davis-Poynter N, Flaminio MJ, Horohov DW, Osterrieder K, Pusterla N, et al. Equine herpesvirus-1 consensus statement. J Vet Intern Med. 2009;23:450-461.
Khusro A, Aarti C, Rivas-Caceres RR, Barbabosa-Pliego A. Equine herpesvirus-I infection in horses: recent updates on its pathogenicity, vaccination, and preventive management strategies. J Equine Vet. 2020;87:102923.
Oladunni FS, Sarkar S, Reedy S, Balasuriya UBR, Horohov DW, Chambers TM. Equid herpesvirus 1 targets the sensitization and induction steps to inhibit the type I interferon response in equine endothelial cells. J Virol. 2019;93(23):e01342-19.
Burns EN, Finno CJ. Equine degenerative myeloencephalopathy: prevalence, impact, and management. Vet Med (Auckl). 2018;9:63-67.
Pusterla N, Hussey GS, Goehring LS. Equine herpesvirus-1 myeloencephalopathy. Vet Clin North Am Equine Pract. 2022;38:339-362.
Oladunni FS, Horohov DW, Chambers TM. EHV-1: a constant threat to the horse industry. Front Microbiol. 2019;10:2668.
Management of an EHV-1 outbreak at FEI events and its international impact. Vet Rec. 2021;189:e905.
Courouce A, Normand C, Tessier C, Pomares R, Thevenot J, Marcillaud-Pitel C, et al. Equine herpesvirus-1 outbreak during a show-jumping competition: a clinical and epidemiological study. J Equine Vet. 2023;128:104869.
EHV-1 update on cases in mainland Europe - all remaining isolated horses in Oliva cleared to leave. Lausanne:FEI; 2023.
Hussey SB, Clark R, Lunn KF, Breathnach C, Soboll G, Whalley JM, et al. Detection and quantification of equine herpesvirus-1 viremia and nasal shedding by real-time polymerase chain reaction. J Vet Diagn Invest. 2006;18:335-342.
Allen GP. Development of a real-time polymerase chain reaction assay for rapid diagnosis of neuropathogenic strains of equine herpesvirus-1. J Vet Diagn Invest. 2007;19:69-72.
Henninger RW, Reed SM, Saville WJ, Allen GP, Hass GF, Kohn CW, et al. Outbreak of neruological disease caused by equine herpesvirus-1 at a university equestrian center. J Vet Intern Med. 2007;21:157-165.
Goehring LS, van Winden SC, van Maanen C, van Oldruitenborgh-Oosterbaan MMS. Equine herpesvirus type 1-associated myeloencephalopathy in The Netherlands: a four-year retrospective study (1999-2003). J Vet Intern Med. 2006;20:601-607.
Seeber PA, Dayaram A, Sicks F, Osterrieder N, Franz M, Greenwood AD. Noninvasive detection of equid herpesviruses in fecal samples. Appl Environ Microbiol. 2019;85(3):e002234-18.
Patel JR, Edington N, Mumford JA. Variation in cellular tropism between isolates of equine herpesvirus-1 in foals. Arch Virol. 1982;74:41-51.
Hebia-Fellah I, Leaute A, Fieni F, Zientara S, Imbert-Marcille BM, Besse B, et al. Evaluation of the presence of equine viral herpesvirus 1 (EHV-1) and equine viral herpesvirus 4 (EHV-4) DNA in stallion semen using polymerase chain reaction (PCR). Theriogenology. 2009;71:1381-1389.
Walter J, Balzer HJ, Seeh C, Fey K, Bleul U, Osterrieder N. Venereal shedding of equid herpesvirus-1 (EHV-1) in naturally infected stallions. J Vet Intern Med. 2012;26:1500-1504.
Pusterla N, Hussey SB, Mapes S, Leutenegger CM, Madigan JE, Ferraro GL, et al. Comparison of four methods to quantify Equid herpesvirus 1 load by real-time polymerase chain reaction in nasal secretions of experimentally and naturally infected horses. J Vet Diagn Invest. 2009;21:836-840.
Mayhew IG, deLahunta A, Whitlock RH, Krook L, Tasker JB. Spinal cord disease in the horse. Cornell Vet. 1978;68(S6):1-207.
Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159-174.
Goehring LS, Landolt GA, Morley PS. Detection and management of an outbreak of equine herpesvirus type 1 infection and associated neurological disease in a veterinary teaching hospital. J Vet Intern Med. 2010;24:1176-1183.
Wilson WD. Equine herpesvirus 1 myeloencephalopathy. Vet Clin North Am Equine Pract. 1997;13:53-72.
Price D, Barnum S, Mize J, Pusterla N. Investigation of the use of non-invasive samples for the molecular detection of EHV-1 in horses with and without clinical infection. Pathogens. 2022;11:574.
Vereecke N, Carnet F, Pronost S, Vanschandevijl K, Theuns S, Nauwynck H. Genome sequences of equine herpesvirus 1 strains from a European outbreak of neurological disorders linked to a horse gathering in Valencia, Spain, in 2021. Microbiol Resour Announc. 2021;10:e00333-21.
Nugent J, Birch-Machin I, Smith KC, Mumford JA, Swann Z, Newton JR, et al. Analysis of equid herpesvirus 1 strain variation reveals a point mutation of the DNA polymerase strongly associated with neuropathogenic versus nonneuropathogenic disease outbreaks. J Virol. 2006;80:4047-4060.
Perkins GA, Goodman LB, Tsujimura K, Van de Walle GR, Kim SG, Dubovi EJ, et al. Investigation of the prevalence of neurological equine herpes virus type 1 (EHV-1) in a 23-year retrospective analysis (1984-2007). Vet Microbiol. 2009;139:375-378.
Pusterla N, Barnum S, Miller J, Varnell S, Dallap-Schaer B, Aceto H, et al. Investigation of an EHV-1 outbreak in the United States caused by a new H752 genotype. Pathogens. 2021;10(6):747.
Sutton G, Normand C, Carnet F, Courouce A, Garvey M, Castagnet S, et al. Equine herpesvirus 1 variant and new marker for epidemiologic surveillance, Europe, 2021. Emerg Infect Dis. 2021;27:2738-2739.
Pusterla N, Barnum S, Lawton K, Wademan C, Corbin R, Hodzic E. Investigation of the EHV-1 genotype (N752, D752, and H752) in swabs collected from equids with respiratory and neurological disease and abortion from the United States (2019-2022). J Equine Vet. 2023;123:104244.
Easther R, Manthorpe E, Woolford L, Kawarizadeh A, Hemmatzadeh F, Ferlini AG. Eosinophilic inflammation and equine herpesvirus-1 associated with haemorrhagic cystitis in a horse. Case report. J Equine Vet Sci. 2022;119:104161.
Chen T, Hudnall SD. Anatomical mapping of human herpesvirus reservoirs of infection. Mod Pathol. 2006;19:726-737.
Ashshi AM, Klapper PE, Cooper RJ. Detection of human cytomegalovirus, human herpesvirus type 6 and human herpesvirus type 7 in urine specimens by multiplex PCR. J Infect. 2003;47:59-64.
Balasuriya UB, Crossley BM, Timoney PJ. A review of traditional and contemporary assays for direct and indirect detection of Equid herpesvirus 1 in clinical samples. J Vet Diagn Invest. 2015;27:673-687.
Vandenberghe E, Boshuizen B, Delesalle CJG, Goehring LS, Groome KA, van Maanen K, et al. New insights into the management of an EHV-1 (equine hospital) outbreak. Viruses. 2021;13:1429.
Perkins GA, Goodman LB, Dubovi EJ, Kim SG, Osterrieder N. Detection of equine herpesvirus-1 in nasal swabs of horses by quantitative real-time PCR. J Vet Intern Med. 2008;22:1234-1238.
Pusterla N, Leutenegger CM, Barnum S, Wademan C, Hodzic E. Challenges in navigating molecular diagnostics for common equine respiratory viruses. Vet J. 2021;276:105746.
Brinkman JA, Rahmani MZ, Jones WE, Chaturvedi AK, Hagensee ME. Optimization of PCR based detection of human papillomavirus DNA from urine specimens. J Clin Virol. 2004;29:230-240.
Wilson IG. Inhibition and facilitation of nucleic acid amplification. Appl Environ Microbiol. 1997;63:3741-3751.
Téblick L, Van Keer S, De Smet A, Van Damme P, Laeremans M, Rios Cortes A, et al. Impact of collection volume and DNA extraction method on the detection of biomarkers and HPV DNA in first-void urine. Molecules. 2021;26:1989.
Maxwell LK, Bentz BG, Gilliam LL, Ritchey JW, Pusterla N, Eberle R, et al. Efficacy of the early administration of valacyclovir hydrochloride for the treatment of neuropathogenic equine herpesvirus type-1 infection in horses. Am J Vet Res. 2017;78:1126-1139.
Garré B, Gryspeerdt A, Croubels S, De Backer P, Nauwynck H. Evaluation of orally administered valacyclovir in experimentally EHV1-infected ponies. Vet Microbiol. 2009;135:214-221.
Soma L, Robinson M, You Y, Boston R, Rudy J. Pharmacokinetics, disposition, and plasma concentrations of dimethyl sulfoxide (DMSO) in the horse following topical, oral, and intravenous administration. J Vet Pharmacol Ther. 2018;41:384-392.
Saklou NT, Burgess BA, Ashton LV, Morley PS, Goehring LS. Environmental persistence of equid herpesvirus type-1. Equine Vet J. 2021;53:349-355.

Auteurs

Ana Velloso Alvarez (A)

University Cardenal Herrera CEU, Valencia, Spain.

E Jose-Cunilleras (E)

Unitat Equina, Fundació Hospital Clínic Veterinari, Cerdañola del Valles, Spain.
Department of Animal Medicine and Surgery, Universitat Autònoma de Barcelona, Cerdañola del Valles, Spain.

Abel Dorrego-Rodriguez (A)

VISAVET Health Surveillance Centre, Universidad Complutense, Madrid, Spain.

Isabel Santiago-Llorente (I)

Hospital Clínico Veterinario Complutense, Universidad Complutense, Madrid, Spain.

Maria de la Cuesta-Torrado (M)

University Cardenal Herrera CEU, Valencia, Spain.

Lucas Troya-Portillo (L)

Unitat Equina, Fundació Hospital Clínic Veterinari, Cerdañola del Valles, Spain.
Department of Animal Medicine and Surgery, Universitat Autònoma de Barcelona, Cerdañola del Valles, Spain.

Belen Rivera (B)

VISAVET Health Surveillance Centre, Universidad Complutense, Madrid, Spain.

Valentina Vitale (V)

University Cardenal Herrera CEU, Valencia, Spain.

Lucia de Juan (L)

VISAVET Health Surveillance Centre, Universidad Complutense, Madrid, Spain.
Animal Health Department, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain.

Fatima Cruz-Lopez (F)

VISAVET Health Surveillance Centre, Universidad Complutense, Madrid, Spain.

Classifications MeSH