A generalisation of the method of regression calibration.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
13 09 2023
13 09 2023
Historique:
received:
09
08
2023
accepted:
07
09
2023
medline:
15
9
2023
pubmed:
14
9
2023
entrez:
13
9
2023
Statut:
epublish
Résumé
There is direct evidence of risks at moderate and high levels of radiation dose for highly radiogenic cancers such as leukaemia and thyroid cancer. For many cancer sites, however, it is necessary to assess risks via extrapolation from groups exposed at moderate and high levels of dose, about which there are substantial uncertainties. Crucial to the resolution of this area of uncertainty is the modelling of the dose-response relationship and the importance of both systematic and random dosimetric errors for analyses in the various exposed groups. It is well recognised that measurement error can alter substantially the shape of this relationship and hence the derived population risk estimates. Particular attention has been devoted to the issue of shared errors, common in many datasets, and particularly important in occupational settings. We propose a modification of the regression calibration method which is particularly suited to studies in which there is a substantial amount of shared error, and in which there may also be curvature in the true dose response. This method can be used in settings where there is a mixture of Berkson and classical error. In fits to synthetic datasets in which there is substantial upward curvature in the true dose response, and varying (and sometimes substantial) amounts of classical and Berkson error, we show that the coverage probabilities of all methods for the linear coefficient [Formula: see text] are near the desired level, irrespective of the magnitudes of assumed Berkson and classical error, whether shared or unshared. However, the coverage probabilities for the quadratic coefficient [Formula: see text] are generally too low for the unadjusted and regression calibration methods, particularly for larger magnitudes of the Berkson error, whether this is shared or unshared. In contrast Monte Carlo maximum likelihood yields coverage probabilities for [Formula: see text] that are uniformly too high. The extended regression calibration method yields coverage probabilities that are too low when shared and unshared Berkson errors are both large, although otherwise it performs well, and coverage is generally better than these other three methods. A notable feature is that for all methods apart from extended regression calibration the estimates of the quadratic coefficient [Formula: see text] are substantially upwardly biased.
Identifiants
pubmed: 37704705
doi: 10.1038/s41598-023-42283-y
pii: 10.1038/s41598-023-42283-y
pmc: PMC10499875
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, N.I.H., Intramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
15127Subventions
Organisme : NCI NIH HHS
ID : R01 CA197422
Pays : United States
Commentaires et corrections
Type : UpdateOf
Informations de copyright
© 2023. Springer Nature Limited.
Références
Comput Stat Data Anal. 2013 Nov 1;67:15-24
pubmed: 24072947
Radiat Environ Biophys. 2000 Dec;39(4):241-52
pubmed: 11200968
Radiat Environ Biophys. 2004 Dec;43(4):233-45
pubmed: 15565453
J Natl Cancer Inst Monogr. 2020 Jul 1;2020(56):176-187
pubmed: 32657345
J Natl Cancer Inst Monogr. 2020 Jul 1;2020(56):114-132
pubmed: 32657346
Stat Med. 2016 Feb 10;35(3):399-423
pubmed: 26365692
Int J Radiat Biol. 2000 Jul;76(7):939-53
pubmed: 10923618
J Natl Cancer Inst Monogr. 2020 Jul 1;2020(56):188-200
pubmed: 32657347
Biometrics. 2011 Dec;67(4):1461-70
pubmed: 21385161
Am J Epidemiol. 1993 Sep 15;138(6):430-42
pubmed: 8213748
Radiat Res. 1990 Sep;123(3):275-84
pubmed: 2217725
Radiat Res. 2008 Jul;170(1):118-26
pubmed: 18582151
PLoS One. 2015 Oct 14;10(10):e0139826
pubmed: 26465339
Ann ICRP. 2007;37(2-4):1-332
pubmed: 18082557
Radiat Res. 2012 Nov;178(5):425-36
pubmed: 22998226
J Radiol Prot. 2010 Mar;30(1):1-3
pubmed: 20234068
Radiat Res. 2020 Aug 1;194(2):153-161
pubmed: 32845990
Stat Med. 2008 May 30;27(12):2159-76
pubmed: 18081195
Environ Int. 2022 Jan 15;159:106983
pubmed: 34959181
J Natl Cancer Inst Monogr. 2020 Jul 1;2020(56):97-113
pubmed: 32657348
J Natl Cancer Inst Monogr. 2020 Jul 1;2020(56):133-153
pubmed: 32657349
Int J Radiat Biol. 1998 Oct;74(4):471-80
pubmed: 9798958
Stat Med. 1993 Sep 30;12(18):1703-22
pubmed: 8248663
Eur J Epidemiol. 2022 Aug;37(8):837-847
pubmed: 35226216
Lancet Haematol. 2018 Aug;5(8):e346-e358
pubmed: 30026010
J Clin Endocrinol Metab. 2017 Jul 1;102(7):2575-2583
pubmed: 28323979
Int J Radiat Biol. 1996 Jul;70(1):83-94
pubmed: 8691040
Radiat Res. 2021 Apr 1;195(4):334-346
pubmed: 33471905
J Natl Cancer Inst Monogr. 2020 Jul 1;2020(56):154-175
pubmed: 32657350
Radiat Res. 2021 Oct 1;196(4):449-451
pubmed: 34399424
Sci Total Environ. 2022 Aug 1;832:154723
pubmed: 35351505
Environ Health Perspect. 1997 Dec;105 Suppl 6:1505-9
pubmed: 9467073
Biometrics. 2004 Mar;60(1):172-81
pubmed: 15032787
PLoS One. 2017 Apr 3;12(4):e0174641
pubmed: 28369141
Radiat Res. 2007 Dec;168(6):757-63
pubmed: 18088178
Stat Med. 1988 Aug;7(8):819-41
pubmed: 3413364
Radiat Res. 2020 Sep 16;194(3):259-276
pubmed: 32942303
Radiat Res. 2013 Mar;179(3):361-82
pubmed: 23398354
Stat Med. 2020 Jul 20;39(16):2197-2231
pubmed: 32246539
Radiat Res. 2008 Jun;169(6):660-76
pubmed: 18494541
Stat Med. 2020 Jul 20;39(16):2232-2263
pubmed: 32246531
Radiat Res. 2014 Jul;182(1):1-17
pubmed: 24932535
Radiat Res. 2015 Feb;183(2):159-173
pubmed: 25574587
PLoS One. 2014 Jan 29;9(1):e85723
pubmed: 24489667
Stat Med. 1998 Oct 15;17(19):2157-77
pubmed: 9802176
Radiat Environ Biophys. 2015 Aug;54(3):273-83
pubmed: 25894839
Environ Health. 2019 Apr 8;18(1):31
pubmed: 30961632