The roles of different microRNAs in the regulation of cholesterol in viral hepatitis.


Journal

Cell communication and signaling : CCS
ISSN: 1478-811X
Titre abrégé: Cell Commun Signal
Pays: England
ID NLM: 101170464

Informations de publication

Date de publication:
14 09 2023
Historique:
received: 20 05 2023
accepted: 30 07 2023
medline: 18 9 2023
pubmed: 15 9 2023
entrez: 14 9 2023
Statut: epublish

Résumé

Cholesterol plays a significant role in stabilizing lipid or membrane rafts, which are specific cellular membrane structures. Cholesterol is involved in numerous cellular processes, including regulating virus entry into the host cell. Multiple viruses have been shown to rely on cholesterol for virus entry and/or morphogenesis. Research indicates that reprogramming of the host's lipid metabolism is associated with hepatitis B virus (HBV) and hepatitis C virus (HCV) infections in the progression to severe liver disease for viruses that cause chronic hepatitis. Moreover, knowing the precise mode of viral interaction with target cells sheds light on viral pathogenesis and aids in the development of vaccines and therapeutic targets. As a result, the area of cholesterol-lowering therapy is quickly evolving and has many novel antiviral targets and medications. It has been shown that microRNAs (miRNAs) either directly or indirectly target the viral genome, preventing viral replication. Moreover, miRNAs have recently been shown to be strong post-transcriptional regulators of the genes involved in lipid metabolism, particularly those involved in cholesterol homeostasis. As important regulators of lipid homeostasis in several viral infections, miRNAs have recently come to light. In addition, multiple studies demonstrated that during viral infection, miRNAs modulate several enzymes in the mevalonate/cholesterol pathway. As cholesterol metabolism is essential to the life cycle of viral hepatitis and other viruses, a sophisticated understanding of miRNA regulation may contribute to the development of a novel anti-HCV treatment. The mechanisms underlying the effectiveness of miRNAs as cholesterol regulators against viral hepatitis are explored in this review. Video Abstract.

Identifiants

pubmed: 37710249
doi: 10.1186/s12964-023-01250-w
pii: 10.1186/s12964-023-01250-w
pmc: PMC10500852
doi:

Substances chimiques

Antibodies 0
Cholesterol 97C5T2UQ7J

Types de publication

Video-Audio Media Journal Article Review Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

231

Commentaires et corrections

Type : ErratumIn

Informations de copyright

© 2023. BioMed Central Ltd., part of Springer Nature.

Références

Huang B, Song B-l, Xu C. Cholesterol metabolism in cancer: mechanisms and therapeutic opportunities. Nat metabolism. 2020;2(2):132–41.
Hooper DR, et al. Endocrinological roles for testosterone in resistance exercise responses and adaptations. Sports Med. 2017;47:1709–20.
pubmed: 28224307
Zeng H, et al. Cholesterol and C-reactive protein prognostic score predicted prognosis of immune checkpoint inhibitors based interventional therapies for intermediate-to-advanced hepatocellular carcinoma patients. Int Immunopharmacol. 2023;115:109651.
pubmed: 36638663
Kummer S, et al. Pharmacologically induced endolysosomal cholesterol imbalance through clinically licensed drugs itraconazole and fluoxetine impairs Ebola virus infection in vitro. Emerg Microbes Infections. 2022;11(1):195–207.
Elgner F, et al. The intracellular cholesterol transport inhibitor U18666A inhibits the exosome-dependent release of mature hepatitis C virus. J Virol. 2016;90(24):11181–96.
pubmed: 27707921 pmcid: 5126375
Takano T, et al. The cholesterol transport inhibitor U18666A inhibits type I feline coronavirus infection. Antiviral Res. 2017;145:96–102.
pubmed: 28780424 pmcid: 7113792
Song B. The cholesterol transport inhibitor U18666A interferes with Pseudorabies Virus infection. Viruses. 2022;14(7):1539.
pubmed: 35891519 pmcid: 9319728
Chapuy-Regaud S, et al. Progesterone and a phospholipase inhibitor increase the endosomal bis (monoacylglycero) phosphate content and block HIV viral particle intercellular transmission. Biochimie. 2013;95(9):1677–88.
pubmed: 23774297
Li G, et al. NPC1-regulated dynamic of clathrin-coated pits is essential for viral entry. Sci China Life Sci. 2022;65(2):341–61.
pubmed: 34047913
Wichit S, et al. Imipramine inhibits chikungunya virus replication in human skin fibroblasts through interference with intracellular cholesterol trafficking. Sci Rep. 2017;7(1):1–12.
Lee C-J, et al. Cholesterol effectively blocks entry of flavivirus. J Virol. 2008;82(13):6470–80.
pubmed: 18448543 pmcid: 2447114
Barrantes FJ. The constellation of cholesterol-dependent processes associated with SARS-CoV-2 infection. Prog Lipid Res. 2022;101166.  https://pubmed.ncbi.nlm.nih.gov/35513161/ .
Schloer S, et al. Combinatory treatment with oseltamivir and itraconazole targeting both virus and host factors in influenza a virus infection. Viruses. 2020;12(7):703.
pubmed: 32610711 pmcid: 7412427
Felmlee DJ, et al. Hepatitis C virus, cholesterol and lipoproteins—impact for the viral life cycle and pathogenesis of liver disease. Viruses. 2013;5(5):1292–324.
pubmed: 23698400 pmcid: 3712309
Aizaki H, et al. Critical role of virion-associated cholesterol and sphingolipid in hepatitis C virus infection. J Virol. 2008;82(12):5715–24.
pubmed: 18367533 pmcid: 2395132
Liou J-W, Mani H, Yen J-H. Viral Hepatitis, cholesterol metabolism, and cholesterol-lowering natural compounds. Int J Mol Sci. 2022;23(7):3897.
pubmed: 35409259 pmcid: 8999150
Moore KJ, et al. microRNAs and cholesterol metabolism. Trends in Endocrinology & Metabolism. 2010;21(12):699–706.
Norouzi M, et al. Recent advances on nanomaterials-based fluorimetric approaches for microRNAs detection. Mater Sci Engineering: C. 2019;104:110007.
Desrochers GF et al. microRNA-27b regulates hepatic lipase enzyme LIPC and reduces triglyceride degradation during hepatitis C virus infection. J Biol Chem. 2022;298(6).  https://pubmed.ncbi.nlm.nih.gov/35483451/ .
Hu J, et al. The potential use of microRNAs as a therapeutic strategy for SARS-CoV-2 infection. Arch Virol. 2021;166:2649–72.
pubmed: 34278528 pmcid: 8286877
Jeon T-I, Osborne TF. miRNA and cholesterol homeostasis Biochimica et Biophysica Acta (BBA). Mol Cell Biol Lipids. 2016;1861(12):2041–6.
Romero-Cordoba SL, et al. miRNA biogenesis: biological impact in the development of cancer. Cancer Biol Ther. 2014;15(11):1444–55.
pubmed: 25482951 pmcid: 4622859
Vishnoi A, Rani S. MiRNA biogenesis and regulation of diseases: an overview. MicroRNA Profiling. 2017. p. 1–10.  https://pubmed.ncbi.nlm.nih.gov/27826912/ .
Li M, Yu B. Recent advances in the regulation of plant miRNA biogenesis. RNA Biol. 2021;18(12):2087–96.
pubmed: 33666136 pmcid: 8632083
Leitão AL, Enguita FJ. A structural view of miRNA Biogenesis and function. Volume 8. Non-coding RNA; 2022. p. 10. 1.
Hu J, et al. The potential use of microRNAs as a therapeutic strategy for SARS-CoV-2 infection. Arch Virol. 2021;166(10):2649–72.
pubmed: 34278528 pmcid: 8286877
Oveili E, et al. The potential use of mesenchymal stem cells-derived exosomes as microRNAs delivery systems in different diseases. Cell Communication and Signaling. 2023;21(1):1–26.
Lee Y, et al. Antisense-oligonucleotide co-micelles with tumor targeting peptides elicit therapeutic effects by inhibiting microRNA-21 in the glioblastoma animal models. Journal of Advanced Research; 2023.
Krützfeldt J, et al. Specificity, duplex degradation and subcellular localization of antagomirs. Nucleic Acids Res. 2007;35(9):2885–92.
pubmed: 17439965 pmcid: 1888827
Letafati A, et al. MicroRNA let-7 and viral infections: focus on mechanisms of action. Cell Mol Biol Lett. 2022;27(1):1–47.
Yoshikawa FSY, et al. Delivery of microRNAs by extracellular vesicles in viral infections: could the news be packaged? Cells. 2019;8(6):611.
pubmed: 31216738 pmcid: 6627707
Zheng B, Zhou J, Wang H. Host microRNAs and exosomes that modulate influenza virus infection. Virus Res. 2020;279:197885.  https://pubmed.ncbi.nlm.nih.gov/31981772/ .
Leon-Icaza SA, Zeng M, Rosas-Taraco AG. microRNAs in viral acute respiratory infections: immune regulation, biomarkers, therapy, and vaccines. ExRNA. 2019;1(1):1–7.
pubmed: 34171007 pmcid: 7149109
Trobaugh DW, Klimstra WB. MicroRNA regulation of RNA virus replication and pathogenesis. Trends Mol Med. 2017;23(1):80–93.
pubmed: 27989642
Meng F, et al. Viral microRNAs encoded by nucleocapsid gene of SARS-CoV-2 are detected during infection, and targeting metabolic pathways in host cells. Cells. 2021;10(7):1762.
pubmed: 34359932 pmcid: 8307234
Gallo A, et al. Viral miRNAs as active players and participants in tumorigenesis. Cancers. 2020;12(2):358.
pmcid: 7072176
Song X, et al. HBV suppresses ZHX2 expression to promote proliferation of HCC through miR-155 activation. Int J Cancer. 2018;143(12):3120–30.
Peng F, et al. HBx down-regulated Gld2 plays a critical role in HBV-related dysregulation of miR-122. PLoS ONE. 2014;9(3):e92998.
pmcid: 3965513
Mo L, et al. Hepatitis A virus-induced hsa-miR-146a-5p attenuates IFN-β signaling by targeting adaptor protein TRAF6. Arch Virol. 2021;166:789–99.
Wilson JA, Sagan SM. Hepatitis C virus and human miR-122: insights from the bench to the clinic. Curr Opin Virol. 2014;7:11–8.
pubmed: 24721497
Murakami Y, et al. Regulation of the hepatitis C virus genome replication by miR-199a. J Hepatol. 2009;50(3):453–60.
pubmed: 19144437
Patil RN, Karpe YA. Uncovering the roles of miR-214 in hepatitis E virus replication. J Mol Biol. 2020;432(19):5322–42.
pubmed: 32735806
McDonald JT, et al. Role of miR-2392 in driving SARS-CoV-2 infection. Cell Rep. 2021;37(3):109839.  https://pubmed.ncbi.nlm.nih.gov/34624208/ .
Chiang K, Liu H, Rice AP. miR-132 enhances HIV-1 replication. Virology. 2013;438(1):1–4.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3594373/ .
Frattari G, Aagaard L, Denton PW. The role of miR-29a in HIV-1 replication and latency. J virus eradication. 2017;3(4):185–91.
Wen W, et al. Cellular microRNA-miR-548 g-3p modulates the replication of dengue virus. J Infect. 2015;70(6):631–40.
pubmed: 25499200
Kanokudom S, et al. miR-21 promotes dengue virus serotype 2 replication in HepG2 cells. Antiviral Res. 2017;142:169–77.  https://pubmed.ncbi.nlm.nih.gov/28365456/ .
Assefi M et al. Potential use of the cholesterol transfer inhibitor U18666A as an antiviral drug for research on various viral infections Microbial Pathogenesis, 2023: p. 106096.
Bremer CM, et al. Hepatitis B virus infection is dependent on cholesterol in the viral envelope. Cell Microbiol. 2009;11(2):249–60.
pubmed: 19016777
Ceballos-Olvera I, et al. JNK phosphorylation, induced during dengue virus infection, is important for viral infection and requires the presence of cholesterol. Virology. 2010;396(1):30–6.
pubmed: 19897220
Lu A. Endolysosomal cholesterol export: more than just NPC1. BioEssays. 2022;44(10):2200111.
Tang Y, et al. Deficiency of niemann-pick type C-1 protein impairs release of human immunodeficiency virus type 1 and results in gag accumulation in late endosomal/lysosomal compartments. J Virol. 2009;83(16):7982–95.
pubmed: 19474101 pmcid: 2715784
Côté M, et al. Small molecule inhibitors reveal Niemann–Pick C1 is essential for Ebola virus infection. Nature. 2011;477(7364):344–8.
pubmed: 21866101 pmcid: 3230319
Fan Y, et al. The NPC families mediate BmNPV Entry. Microbiol Spectr. 2022;10(4):e00917–22.
pubmed: 35867410 pmcid: 9430594
Wei Q, et al. Dual-role of cholesterol-25‐Hydroxylase in regulating Hepatitis B Virus infection and replication. Mbio. 2022;13(3):e00677–22.
pubmed: 35587189 pmcid: 9239238
Chen Y, et al. Interferon-inducible cholesterol-25-hydroxylase inhibits hepatitis C virus replication via distinct mechanisms. Sci Rep. 2014;4(1):7242.
pubmed: 25467815 pmcid: 4252895
Liu S-Y, et al. Interferon-inducible cholesterol-25-hydroxylase broadly inhibits viral entry by production of 25-hydroxycholesterol. Immunity. 2013;38(1):92–105.
pubmed: 23273844
Zu S, et al. 25-Hydroxycholesterol is a potent SARS-CoV-2 inhibitor. Cell Res. 2020;30(11):1043–5.
pubmed: 32811977
Li C, et al. 25-Hydroxycholesterol protects host against Zika virus infection and its associated microcephaly in a mouse model. Immunity. 2017;46(3):446–56.
pubmed: 28314593 pmcid: 5957489
Cenedella RJ, Bierkamper GG. Mechanism of cataract production by 3-β (2-diethylaminoethoxy) androst-5-en-17-one hydrochloride, U18666A: an inhibitor of cholesterol biosynthesis. Exp Eye Res. 1979;28(6):673–88.
pubmed: 467524
Poh MK, et al. U18666A, an intra-cellular cholesterol transport inhibitor, inhibits dengue virus entry and replication. Antiviral Res. 2012;93(1):191–8.
pubmed: 22146564
Takano T, et al. Augmentation of DHCR24 expression by hepatitis C virus infection facilitates viral replication in hepatocytes. J Hepatol. 2011;55(3):512–21.
pubmed: 21184787
Duan Y, et al. Regulation of cholesterol homeostasis in health and diseases: from mechanisms to targeted therapeutics. Signal Transduct Target Therapy. 2022;7(1):265.
Citrin KM, Fernández-Hernando C, Suárez Y. MicroRNA regulation of cholesterol metabolism. Ann N Y Acad Sci. 2021;1495(1):55–77.
pubmed: 33521946 pmcid: 8938903
Goedeke L, et al. miRNA regulation of LDL-cholesterol metabolism Biochimica et Biophysica Acta (BBA). Mol Cell Biol Lipids. 2016;1861(12):2047–52.
Miao J, et al. Flavin-containing monooxygenase 3 as a potential player in diabetes-associated atherosclerosis. Nat Commun. 2015;6(1):6498.
pubmed: 25849138
Jeon T-I, et al. An SREBP-responsive microRNA operon contributes to a regulatory loop for intracellular lipid homeostasis. Cell Metabol. 2013;18(1):51–61.
Choi SE, et al. Elevated micro RNA-34a in obesity reduces NAD + levels and SIRT 1 activity by directly targeting NAMPT. Aging Cell. 2013;12(6):1062–72.  https://pubmed.ncbi.nlm.nih.gov/23834033/ .
Najafi-Shoushtari SH, et al. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science. 2010;328(5985):1566–9.  https://pubmed.ncbi.nlm.nih.gov/20466882/ .
Soh J, et al. MicroRNA-30c reduces hyperlipidemia and atherosclerosis in mice by decreasing lipid synthesis and lipoprotein secretion. Nat Med. 2013;19(7):892–900.
pubmed: 23749231 pmcid: 4121125
Kurtz CL, et al. MicroRNA-29 fine-tunes the expression of key FOXA2-activated lipid metabolism genes and is dysregulated in animal models of insulin resistance and diabetes. Diabetes. 2014;63(9):3141–8.
pubmed: 24722248 pmcid: 4141370
Solly EL, et al. MicroRNAs as therapeutic targets and clinical biomarkers in atherosclerosis. J Clin Med. 2019;8(12):2199.
pubmed: 31847094 pmcid: 6947565
Rayner KJ, Moore KJ. MicroRNA control of high-density lipoprotein metabolism and function. Circul Res. 2014;114(1):183–92.
Gholizadeh O et al. The role of non-coding RNAs in the diagnosis of different stages (HCC, CHB, OBI) of hepatitis B infection Microbial Pathogenesis, 2023: p. 105995.
Gholizadeh O et al. Hepatitis A: Viral Structure, Classification, Life Cycle, Clinical Symptoms, Diagnosis Error, and Vaccination Canadian Journal of Infectious Diseases and Medical Microbiology, 2023. 2023.
Sheridan DA, et al. Infection with the hepatitis C virus causes viral genotype-specific differences in cholesterol metabolism and hepatic steatosis. Sci Rep. 2022;12(1):1–11.
Singaravelu R, et al. Hepatitis C virus induced up-regulation of microRNA‐27: a novel mechanism for hepatic steatosis. Hepatology. 2014;59(1):98–108.
pubmed: 23897856
Selitsky SR, et al. Transcriptomic analysis of chronic hepatitis B and C and liver cancer reveals microRNA-mediated control of cholesterol synthesis programs. MBio. 2015;6(6):e01500–15.
pubmed: 26646011 pmcid: 4676282
Li M, et al. MicroRNA-185-5p mediates regulation of SREBP2 expression by hepatitis C virus core protein. World J gastroenterology: WJG. 2015;21(15):4517.
pmcid: 4402298
Sidorkiewicz M, et al. The impact of chronic hepatitis C infection on cholesterol metabolism in PBMCs is associated with microRNA-146a expression. Eur J Clin Microbiol Infect Dis. 2017;36:697–702.
pubmed: 27888401
Thibault PA, Wilson JA. Targeting miRNAs to treat hepatitis C virus infections and liver pathology: inhibiting the virus and altering the host. Pharmacol Res. 2013;75:48–59.
pubmed: 23541631
Rheault M, et al. Elucidating the distinct contributions of miR-122 in the HCV life cycle reveals insights into virion assembly. Nucleic Acids Res. 2023;51(5):2447–63.
pubmed: 36807979 pmcid: 10018354
Sidorkiewicz M, Grek-Kowalinska M, Piekarska A. Changes in miR-122 and cholesterol expression in Chronic Hepatitis C Patients after PegIFN-Alpha/Ribavirin treatment. Pathogens. 2020;9(6):514.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7350302/ .
Mahdy MM, et al. miR-29a promotes lipid droplet and triglyceride formation in HCV infection by inducing expression of SREBP-1c and CaV1. J Clin Translational Hepatol. 2016;4(4):293.
M Cui. Involvement of cholesterol in hepatitis B virus X protein-induced abnormal lipid metabolism of hepatoma cells via up-regulating miR-205-targeted ACSL4. Biochem Biophys Res Comm. 2014;(3):651–5.  https://pubmed.ncbi.nlm.nih.gov/24576478/ .
Esau C, et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metabol. 2006;3(2):87–98.
Bandiera S, et al. miR-122–a key factor and therapeutic target in liver disease. J Hepatol. 2015;62(2):448–57.
pubmed: 25308172
Shan Y, et al. Reciprocal effects of micro-RNA-122 on expression of heme oxygenase-1 and hepatitis C virus genes in human hepatocytes. Gastroenterology. 2007;133(4):1166–74.
pubmed: 17919492
Dai X, et al. Modulation of HBV replication by microRNA-15b through targeting hepatocyte nuclear factor 1α. Nucleic Acids Res. 2014;42(10):6578–90.
pubmed: 24705650 pmcid: 4041434
Liu Z, Sall A, Yang D. MicroRNA: an emerging therapeutic target and intervention tool. Int J Mol Sci. 2008;9(6):978–99.
pubmed: 19325841 pmcid: 2658779
Ghosh Z, Mallick B, Chakrabarti J. Cellular versus viral microRNAs in host–virus interaction. Nucleic Acids Res. 2009;37(4):1035–48.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2651794/ .
Kincaid RP, Sullivan CS. Virus-encoded microRNAs: an overview and a look to the future. PLoS Pathog. 2012;8(12):e1003018.
pubmed: 23308061 pmcid: 3534370
Janssen HL, et al. Treatment of HCV infection by targeting microRNA. N Engl J Med. 2013;368(18):1685–94.
pubmed: 23534542
van der Ree MH, et al. Safety, tolerability, and antiviral effect of RG-101 in patients with chronic hepatitis C: a phase 1B, double-blind, randomised controlled trial. The Lancet. 2017;389(10070):709–17.
Girardi E, López P, Pfeffer S. On the importance of host microRNAs during viral infection. Front Genet. 2018;9:439.
pubmed: 30333857 pmcid: 6176045
Mourenza Á, et al. Understanding microRNAs in the context of infection to find New Treatments against Human bacterial pathogens. Antibiotics. 2022;11(3):356.
pubmed: 35326819 pmcid: 8944844
Dash S, Dash C, Pandhare J. Therapeutic significance of microRNA-mediated regulation of PARP-1 in SARS-CoV-2 infection Non-coding RNA, 2021. 7(4): p. 60.
Yasamineh S et al. A state-of-the-art review on the recent advances of niosomes as a targeted drug delivery system. Int J Pharm, 2022: p. 121878.
Zhang J, et al. Exosome and exosomal microRNA: trafficking, sorting, and function. Genom Proteom Bioinform. 2015;13(1):17–24.

Auteurs

Xuan Meng (X)

Hepatobiliary Surgery Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu , 221002, China.

Yeganeh Eslami (Y)

Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.

Ehsan Derafsh (E)

Windsor University, School of Medicine, St. Kitts, Canada.

Anwar Saihood (A)

Department of Microbiology, college of medicine, University of Al-Qadisiyah, Baqubah, Iraq.

Nikoo Emtiazi (N)

Department of Pathology, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran.

Saman Yasamineh (S)

Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.

Omid Gholizadeh (O)

Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. ogholizade1374@gmail.com.

Renzon Daniel Cosme Pecho (RDC)

Department of Biochemistry, UNIVERSIDAD SAN IGNACIO DE LOYOLA (USIL), Lima, Peru.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH