KMT2A-rearranged sarcoma with unusual fusion gene CBX6::KMT2A::PYGO1.
CBX6
Fusion
KMT2A
PYGO1
Sarcoma
Journal
Virchows Archiv : an international journal of pathology
ISSN: 1432-2307
Titre abrégé: Virchows Arch
Pays: Germany
ID NLM: 9423843
Informations de publication
Date de publication:
Dec 2023
Dec 2023
Historique:
received:
15
06
2023
accepted:
24
08
2023
revised:
22
08
2023
medline:
7
12
2023
pubmed:
15
9
2023
entrez:
15
9
2023
Statut:
ppublish
Résumé
Recently, rare sarcomas harboring KMT2A rearrangements have been reported. They occur in relatively young individuals, exhibit a sclerosing epithelioid fibrosarcoma-like morphology, and often have an aggressive prognosis. YAP1::KMT2A::YAP1 is the most common fusion gene, followed by VIM::KMT2A. We report the case of a 47-year-old man with a spindle cell tumor arising from the subcutaneous tissue of the right anterior chest. The tumor harbored an unusual novel fusion gene, CBX6::KMT2A::PYGO1. Histologically, the tumor consisted of proliferating spindle-shaped cells with uniform nuclei, which varied in cell density and the amount of intervening collagen fibers. After 2 years and 8 months without postoperative treatment, the patient showed no recurrence or metastasis. Although highly likely irreproducible, tumors with the CBX6::KMT2A::PYGO1 fusion gene were morphologically somewhat different from those containing the YAP1::KMT2A::YAP1. This suggests that KMT2A rearrangements with fusion gene partners different from YAP1 result in purely spindle-shaped cell tumors that produce collagen fibers.
Identifiants
pubmed: 37713130
doi: 10.1007/s00428-023-03639-x
pii: 10.1007/s00428-023-03639-x
doi:
Substances chimiques
Collagen
9007-34-5
Oncogene Proteins, Fusion
0
Biomarkers, Tumor
0
PYGO1 protein, human
0
Adaptor Proteins, Signal Transducing
0
Types de publication
Case Reports
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
891-897Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Yoshida A, Arai Y, Tanzawa Y, Wakai S, Hama N, Kawai A, Shibata T (2019) KMT2A (MLL) fusions in aggressive sarcomas in young adults. Histopathology 75:508–516. https://doi.org/10.1111/his.13926
doi: 10.1111/his.13926
pubmed: 31136005
Puls F, Agaimy A, Flucke U, Mentzel T, Sumathi VP, Ploegmakers M, Stoehr R, Kindblom LG, Hansson M, Sydow S, Arbajian E, Mertens F (2020) Recurrent fusions between YAP1 and KMT2A in morphologically distinct neoplasms within the spectrum of low-grade fibromyxoid sarcoma and sclerosing epithelial fibrosarcoma. Am J Surg Pathol 44:594–606. https://doi.org/10.1038/s41379-020-0582-4
doi: 10.1038/s41379-020-0582-4
pubmed: 31913156
Kao YC, Lee JC, Zhang L, Sung YS, Swanson D, Hsieh TH, Liu YR, Agaram NP, Huang HY, Dickson BC, Antonescu CR (2020) Recurrent YAP1 and KMT2A gene rearrangements in a subset of MUC4-negative sclerosing epithelioid fibrosarcoma. Am J Surg Pathol 44:368–377. https://doi.org/10.1097/PAS.0000000000001382
doi: 10.1097/PAS.0000000000001382
pubmed: 31592798
pmcid: 7012758
Massoth LR, Hung YP, Nard V et al (2020) Pan-sarcoma genomic analysis of KMT2A rearrangements reveals distinct subtypes defined by YAP2-KMT2A-YAP1 and VIM-KMT2A fusions. Mod Pathol 33:2307–2317. https://doi.org/10.1038/s41379-020-0582-4
doi: 10.1038/s41379-020-0582-4
pubmed: 32461620
pmcid: 7581494
Warmke LM, Meis JM (2021) Sclerosing epithelioid fibrosarcoma: a distinct sarcoma with aggressive features. Am J Surg Pathol 45:317–328. https://doi.org/10.1097/PAS.0000000000001559
doi: 10.1097/PAS.0000000000001559
pubmed: 32769431
Almohsen SS, Griffin AM, Dickson BC, Demicco EG (2023) VIM::KMT2A-rearranged sarcomas: a report of two new cases confirming an entity with distinct histologic features. Genes Chromosomes Cancer 62:405–411. https://doi.org/10.1002/gcc.23138
doi: 10.1002/gcc.23138
pubmed: 36959690
Teku G, Nilsson J, Magnusson L, Sydow S, Flucke U, Puls F, Mitra S, Mertens F (2023) Insertion of the CXXC domain of KMT2A into YAP1: an unusual mechanism behind the formation of a chimeric oncogenic protein. Genes Chromosomes Cancer. https://doi.org/10.1002/gcc.23176 Online ahead of print
Yokoyama A, Cleary ML (2008) Menin critically links MLL proteins with LEDGF on cancer-associated target genes. Cancer Cell 14:36–46. https://doi.org/10.1016/j.ccr.2008.05.003
doi: 10.1016/j.ccr.2008.05.003
pubmed: 18598942
pmcid: 2692591
Bochynska A, Lüscher-Firzlaff J, Lüscher B (2018) Modes of interaction of KMT2A histone H3 lysine 4 methyltransferase/COMPASS complexes with chromatin. Cells 7:17. https://doi.org/10.3390/cells7030017
doi: 10.3390/cells7030017
pubmed: 29498679
pmcid: 5870349
Wysocka J, Swigut T, Milne TA, Dou Y, Zhang X, Burlingame AL, Roeder RG, Brivanlou AH, Allis CD (2005) WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development. Cell 121:859–872. https://doi.org/10.1016/j.cell.2005.03.036
doi: 10.1016/j.cell.2005.03.036
pubmed: 15960974
Schneider J, Wood A, Lee JS, Schuster R, Dueker J, Maguire C, Swanson SK, Florens L, Washburn MP, Shilatifard A (2005) Molecular regulation of histone H3 trimethylation by COMPASS and the regulation of gene expression. Mol Cell 19:849–856. https://doi.org/10.1016/j.molcel.2005.07.024
doi: 10.1016/j.molcel.2005.07.024
pubmed: 16168379
Lee Y-T, Ayoub A, Park S-H, Sha L, Xu J, Mao F, Zheng W, Zhang Y, Cho US, Dou Y (2021) Mechanism for DPY30 and ASH2L intrinsically disordered regions to modulate the MLL/SET1 activity on chromatin. Nat Commun 12:2953. https://doi.org/10.1038/s41467-021-23268-9
doi: 10.1038/s41467-021-23268-9
pubmed: 34012049
pmcid: 8134635