Structural landscape of the respiratory syncytial virus nucleocapsids.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
15 09 2023
Historique:
received: 30 03 2023
accepted: 01 09 2023
medline: 18 9 2023
pubmed: 16 9 2023
entrez: 15 9 2023
Statut: epublish

Résumé

Human Respiratory Syncytial Virus (HRSV) is a prevalent cause of severe respiratory infections in children and the elderly. The helical HRSV nucleocapsid is a template for the viral RNA synthesis and a scaffold for the virion assembly. This cryo-electron microscopy analysis reveals the non-canonical arrangement of the HRSV nucleocapsid helix, composed of 16 nucleoproteins per asymmetric unit, and the resulting systematic variations in the RNA accessibility. We demonstrate that this unique helical symmetry originates from longitudinal interactions by the C-terminal arm of the HRSV nucleoprotein. We explore the polymorphism of the nucleocapsid-like assemblies, report five structures of the full-length particles and two alternative arrangements formed by a C-terminally truncated nucleoprotein mutant, and demonstrate the functional importance of the identified longitudinal interfaces. We put all these findings in the context of the HRSV RNA synthesis machinery and delineate the structural basis for its further investigation.

Identifiants

pubmed: 37714861
doi: 10.1038/s41467-023-41439-8
pii: 10.1038/s41467-023-41439-8
pmc: PMC10504348
doi:

Substances chimiques

RNA, Viral 0
Nucleoproteins 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

5732

Informations de copyright

© 2023. Springer Nature Limited.

Références

Li, Y. et al. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in children younger than 5 years in 2019: a systematic analysis. Lancet 399, 2047–2064 (2022).
pubmed: 35598608 pmcid: 7613574 doi: 10.1016/S0140-6736(22)00478-0
Busack, B. & Shorr, A. F. Going Viral—RSV as the neglected adult respiratory virus. Pathogens 11, 1324 (2022).
pubmed: 36422576 pmcid: 9692430 doi: 10.3390/pathogens11111324
Papi, A. et al. Respiratory syncytial virus prefusion f protein vaccine in older adults. N. Engl. J. Med. 388, 595–608 (2023).
pubmed: 36791160 doi: 10.1056/NEJMoa2209604
Hammitt, L. L. et al. Nirsevimab for prevention of RSV in healthy late-preterm and term infants. N. Engl. J. Med. 386, 837–846 (2022).
pubmed: 35235726 doi: 10.1056/NEJMoa2110275
Afonso, C. L. et al. Taxonomy of the order mononegavirales: update 2016. Arch. Virol. 161, 2351–2360 (2016).
pubmed: 27216929 pmcid: 4947412 doi: 10.1007/s00705-016-2880-1
Tawar, R. G. et al. Crystal structure of a nucleocapsid-like nucleoprotein-RNA complex of respiratory syncytial virus. Science 326, 1279–1283 (2009).
pubmed: 19965480 doi: 10.1126/science.1177634
Gutsche, I., le Mercier, P. & Kolakofsky, D. A paramyxovirus-like model for Ebola virus bipartite promoters. PLOS Pathog. 16, e1008972 (2020).
pubmed: 33152032 pmcid: 7643936 doi: 10.1371/journal.ppat.1008972
Jamin, M. & Yabukarski, F. Nonsegmented negative-sense RNA viruses—structural data bring new insights into nucleocapsid assembly. Adv. Virus Res. 97, 143–185 (2017).
Gutsche, I. et al. Structural virology. Near-atomic cryo-EM structure of the helical measles virus nucleocapsid. Science 348, 704–707 (2015).
pubmed: 25883315 doi: 10.1126/science.aaa5137
Wan, W. et al. Structure and assembly of the Ebola virus nucleocapsid. Nature 551, 394–397 (2017).
pubmed: 29144446 pmcid: 5714281 doi: 10.1038/nature24490
Sugita, Y., Matsunami, H., Kawaoka, Y., Noda, T. & Wolf, M. Cryo-EM structure of the Ebola virus nucleoprotein-RNA complex at 3.6 Å resolution. Nature 563, 137–140 (2018).
pubmed: 30333622 doi: 10.1038/s41586-018-0630-0
Song, X. et al. Self-capping of nucleoprotein filaments protects the newcastle disease virus genome. Elife 8, 1–19 (2019).
doi: 10.7554/eLife.45057
Desfosses, A. et al. Assembly and cryo-EM structures of RNA-specific measles virus nucleocapsids provide mechanistic insight into paramyxoviral replication. Proc. Natl Acad. Sci. USA 116, 4256–4264 (2019).
pubmed: 30787192 pmcid: 6410849 doi: 10.1073/pnas.1816417116
Shan, H. et al. Structural plasticity of mumps virus nucleocapsids with cryo-EM structures. Commun. Biol. 4, 1–11 (2021).
doi: 10.1038/s42003-021-02362-0
Zhang, N. et al. Structure and assembly of double-headed Sendai virus nucleocapsids. Commun. Biol. 4, 1–10 (2021).
doi: 10.1038/s42003-021-02027-y
Zinzula, L. et al. Cryo-EM structure of the cetacean morbillivirus nucleoprotein-RNA complex. J. Struct. Biol. 213, 107750 (2021).
pubmed: 34089875 doi: 10.1016/j.jsb.2021.107750
Fujita-Fujiharu, Y. et al. Structural insight into Marburg virus nucleoprotein–RNA complex formation. Nat. Commun. 13, 1–9 (2022).
doi: 10.1038/s41467-022-28802-x
Zhou, K. et al. Atomic model of vesicular stomatitis virus and mechanism of assembly. Nat. Commun. 13, 1–27 (2022).
Ralph, A., Yeo, R. P., Murphy, L. B. & Bhella, D. Significant differences in nucleocapsid morphology within the Paramyxoviridae. J. Gen. Virol. 83, 1831–1839 (2002).
pubmed: 12124447 doi: 10.1099/0022-1317-83-8-1831
MacLellan, K., Loney, C., Yeo, R. P. & Bhella, D. The 24-angstrom structure of respiratory syncytial virus nucleocapsid protein-RNA decameric rings. J. Virol. 81, 9519–9524 (2007).
pubmed: 17567697 pmcid: 1951410 doi: 10.1128/JVI.00526-07
Bakker, S. E. et al. The respiratory syncytial virus nucleoprotein-RNA complex forms a left-handed helical nucleocapsid. J. Gen. Virol. 94, 1734–1738 (2013).
pubmed: 23677789 pmcid: 3749527 doi: 10.1099/vir.0.053025-0
Liljeroos, L., Krzyzaniak, M. A., Helenius, A. & Butcher, S. J. Architecture of respiratory syncytial virus revealed by electron cryotomography. Proc. Natl Acad. Sci. USA 110, 11133–11138 `(2013).
pubmed: 23776214 pmcid: 3703984 doi: 10.1073/pnas.1309070110
Conley, M. J. et al. Helical ordering of envelope‐associated proteins and glycoproteins in respiratory syncytial virus. EMBO J. 1–13, e109728 (2021).
Bloyet, L. M. The nucleocapsid of paramyxoviruses: structure and function of an encapsidated template. Viruses 13, 2465 (2021).
pubmed: 34960734 pmcid: 8708338 doi: 10.3390/v13122465
Li, T. & Shen, Q.-T. Insights into paramyxovirus nucleocapsids from diverse assemblies. Viruses 13, 2479 (2021).
Renner, M. et al. Nucleocapsid assembly in pneumoviruses is regulated by conformational switching of the N protein. Elife 5, 1–12 (2016).
doi: 10.7554/eLife.12627
Ker, D. S., Jenkins, H. T., Greive, S. J. & Antson, A. A. CryoEM structure of the Nipah virus nucleocapsid assembly. PLoS Pathog. 17, 1–19 (2021).
doi: 10.1371/journal.ppat.1009740
Cox, R. M. & Plemper, R. K. Structure and organization of paramyxovirus particles. Curr. Opin. Virol. 24, 105–114 (2017).
pubmed: 28601688 pmcid: 5529233 doi: 10.1016/j.coviro.2017.05.004
Loney, C., Mottet-Osman, G., Roux, L. & Bhella, D. Paramyxovirus ultrastructure and genome packaging: cryo-electron tomography of sendai virus. J. Virol. 83, 8191–8197 (2009).
pubmed: 19493999 pmcid: 2715783 doi: 10.1128/JVI.00693-09
Esneau, C. et al. Biochemical characterization of the respiratory syncytial virus N0-P complex in solution. J. Biol. Chem. 294, 3647–3660 (2019).
pubmed: 30626736 pmcid: 6416419 doi: 10.1074/jbc.RA118.006453
Caspar, D. L. D. & Holmes, K. C. Structure of dahlemense strain of tobacco mosaic virus: a periodically deformed helix. J. Mol. Biol. 46, 99–133 (1969).
pubmed: 5358645 doi: 10.1016/0022-2836(69)90060-6
Decool, H. et al. Interactions between the nucleoprotein and the phosphoprotein of pneumoviruses: structural insight for rational design of antivirals. Viruses 13, 2449 (2021).
Ghildyal, R., Ho, A. & Jans, D. A. Central role of the respiratory syncytial virus matrix protein in infection. FEMS Microbiol. Rev. 30, 692–705 (2006).
pubmed: 16911040 doi: 10.1111/j.1574-6976.2006.00025.x
Bajorek, M. et al. Tetramerization of phosphoprotein is essential for respiratory syncytial virus budding while its n-terminal region mediates direct interactions with the matrix protein. J. Virol. 95, e02217-20 (2021).
Schmitt, P. T., Ray, G. & Schmitt, A. P. The C-terminal end of parainfluenza virus 5 NP protein is important for virus-like particle production and M-NP protein interaction. J. Virol. 84, 12810–12823 (2010).
pubmed: 20943976 pmcid: 3004301 doi: 10.1128/JVI.01885-10
Ray, G., Schmitt, P. T. & Schmitt, A. P. C-terminal DxD-containing sequences within paramyxovirus nucleocapsid proteins determine matrix protein compatibility and can direct foreign proteins into budding particles. J. Virol. 90, 3650–3660 (2016).
pubmed: 26792745 pmcid: 4794684 doi: 10.1128/JVI.02673-15
Galloux, M. et al. Characterization of a viral phosphoprotein binding site on the surface of the respiratory syncytial nucleoprotein. J. Virol. 86, 8375–8387 (2012).
pubmed: 22623798 pmcid: 3421704 doi: 10.1128/JVI.00058-12
Ouizougun-Oubari, M. et al. A druggable pocket at the nucleocapsid/phosphoprotein interaction site of human respiratory syncytial virus. J. Virol. 89, 11129–11143 (2015).
pubmed: 26246564 pmcid: 4621127 doi: 10.1128/JVI.01612-15
Santangelo, P. J. & Bao, G. Dynamics of filamentous viral RNPs prior to egress. Nucleic Acids Res. 35, 3602–3611 (2007).
pubmed: 17485480 pmcid: 1920244 doi: 10.1093/nar/gkm246
Vijayakrishnan, S. et al. Ultrastructural characterization of a viral RNA and G-protein containing, membranous organelle formed in respiratory syncytial virus infected cells. bioRxiv https://www.biorxiv.org/content/10.1101/2022.11.28.517999v1 (2022).
Rincheval, V. et al. Functional organization of cytoplasmic inclusion bodies in cells infected by respiratory syncytial virus. Nat. Commun. 8, 1–11 (2017).
doi: 10.1038/s41467-017-00655-9
Galloux, M. et al. Minimal elements required for the formation of respiratory syncytial virus cytoplasmic inclusion bodies in vivo and in vitro. MBio 11, e01202-20 (2020).
Risso-Ballester, J. et al. A condensate-hardening drug blocks RSV replication in vivo. Nature 595, 596–599 (2021).
pubmed: 34234347 doi: 10.1038/s41586-021-03703-z
Castagné, N. et al. Biochemical characterization of the respiratory syncytial virus P–P and P–N protein complexes and localization of the P protein oligomerization domain. J. Gen. Virol. 85, 1643–1653 (2004).
pubmed: 15166449 doi: 10.1099/vir.0.79830-0
Jin, H. et al. Recombinant human respiratory syncytial virus (RSV) from cDNA and construction of subgroup A and B chimeric RSV. Virology 251, 206–214 (1998).
pubmed: 9813216 doi: 10.1006/viro.1998.9414
Hardy, R. W. & Wertz, G. W. The product of the respiratory syncytial virus M2 gene ORF1 enhances readthrough of intergenic junctions during viral transcription. J. Virol. 72, 520–526 (1998).
pubmed: 9420254 pmcid: 109403 doi: 10.1128/JVI.72.1.520-526.1998
Buchholz, U. J., Finke, S. & Conzelmann, K. K. Generation of bovine respiratory syncytial virus (BRSV) from cDNA: BRSV NS2 is not essential for virus replication in tissue culture, and the human RSV leader region acts as a functional BRSV genome promoter. J. Virol. 73, 251–259 (1999).
pubmed: 9847328 pmcid: 103829 doi: 10.1128/JVI.73.1.251-259.1999
Tang, G. et al. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38–46 (2007).
pubmed: 16859925 doi: 10.1016/j.jsb.2006.05.009
Wagner, T. et al. SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun. Biol. 2, 218 (2019).
pubmed: 31240256 pmcid: 6584505 doi: 10.1038/s42003-019-0437-z
Scheres, S. H. W. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).
pubmed: 23000701 pmcid: 3690530 doi: 10.1016/j.jsb.2012.09.006
Heymann, B. J. Bsoft: image processing for structural biology. Bio-Protoc. 12, e4393 (2022).
pubmed: 35800093 pmcid: 9081485 doi: 10.21769/BioProtoc.4393
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).
pubmed: 28165473 doi: 10.1038/nmeth.4169
Pettersen, E. F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
pubmed: 15264254 doi: 10.1002/jcc.20084
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D. Biol. Crystallogr. 66, 213–221 (2010).
pubmed: 20124702 pmcid: 2815670 doi: 10.1107/S0907444909052925
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D. Biol. Crystallogr. 66, 486–501 (2010).
pubmed: 20383002 pmcid: 2852313 doi: 10.1107/S0907444910007493
Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).
pubmed: 28710774 doi: 10.1002/pro.3235

Auteurs

Lorène Gonnin (L)

Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044, Grenoble, France.
VIM, Paris-Saclay University, INRAE, 78350, Jouy-en-Josas, France.

Ambroise Desfosses (A)

Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044, Grenoble, France. ambroise.desfosses@ibs.fr.

Maria Bacia-Verloop (M)

Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044, Grenoble, France.

Didier Chevret (D)

VIM, Paris-Saclay University, INRAE, 78350, Jouy-en-Josas, France.

Marie Galloux (M)

VIM, Paris-Saclay University, INRAE, 78350, Jouy-en-Josas, France.

Jean-François Éléouët (JF)

VIM, Paris-Saclay University, INRAE, 78350, Jouy-en-Josas, France.

Irina Gutsche (I)

Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044, Grenoble, France. irina.gutsche@ibs.fr.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH