Structural landscape of the respiratory syncytial virus nucleocapsids.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
15 09 2023
15 09 2023
Historique:
received:
30
03
2023
accepted:
01
09
2023
medline:
18
9
2023
pubmed:
16
9
2023
entrez:
15
9
2023
Statut:
epublish
Résumé
Human Respiratory Syncytial Virus (HRSV) is a prevalent cause of severe respiratory infections in children and the elderly. The helical HRSV nucleocapsid is a template for the viral RNA synthesis and a scaffold for the virion assembly. This cryo-electron microscopy analysis reveals the non-canonical arrangement of the HRSV nucleocapsid helix, composed of 16 nucleoproteins per asymmetric unit, and the resulting systematic variations in the RNA accessibility. We demonstrate that this unique helical symmetry originates from longitudinal interactions by the C-terminal arm of the HRSV nucleoprotein. We explore the polymorphism of the nucleocapsid-like assemblies, report five structures of the full-length particles and two alternative arrangements formed by a C-terminally truncated nucleoprotein mutant, and demonstrate the functional importance of the identified longitudinal interfaces. We put all these findings in the context of the HRSV RNA synthesis machinery and delineate the structural basis for its further investigation.
Identifiants
pubmed: 37714861
doi: 10.1038/s41467-023-41439-8
pii: 10.1038/s41467-023-41439-8
pmc: PMC10504348
doi:
Substances chimiques
RNA, Viral
0
Nucleoproteins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
5732Informations de copyright
© 2023. Springer Nature Limited.
Références
Li, Y. et al. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in children younger than 5 years in 2019: a systematic analysis. Lancet 399, 2047–2064 (2022).
pubmed: 35598608
pmcid: 7613574
doi: 10.1016/S0140-6736(22)00478-0
Busack, B. & Shorr, A. F. Going Viral—RSV as the neglected adult respiratory virus. Pathogens 11, 1324 (2022).
pubmed: 36422576
pmcid: 9692430
doi: 10.3390/pathogens11111324
Papi, A. et al. Respiratory syncytial virus prefusion f protein vaccine in older adults. N. Engl. J. Med. 388, 595–608 (2023).
pubmed: 36791160
doi: 10.1056/NEJMoa2209604
Hammitt, L. L. et al. Nirsevimab for prevention of RSV in healthy late-preterm and term infants. N. Engl. J. Med. 386, 837–846 (2022).
pubmed: 35235726
doi: 10.1056/NEJMoa2110275
Afonso, C. L. et al. Taxonomy of the order mononegavirales: update 2016. Arch. Virol. 161, 2351–2360 (2016).
pubmed: 27216929
pmcid: 4947412
doi: 10.1007/s00705-016-2880-1
Tawar, R. G. et al. Crystal structure of a nucleocapsid-like nucleoprotein-RNA complex of respiratory syncytial virus. Science 326, 1279–1283 (2009).
pubmed: 19965480
doi: 10.1126/science.1177634
Gutsche, I., le Mercier, P. & Kolakofsky, D. A paramyxovirus-like model for Ebola virus bipartite promoters. PLOS Pathog. 16, e1008972 (2020).
pubmed: 33152032
pmcid: 7643936
doi: 10.1371/journal.ppat.1008972
Jamin, M. & Yabukarski, F. Nonsegmented negative-sense RNA viruses—structural data bring new insights into nucleocapsid assembly. Adv. Virus Res. 97, 143–185 (2017).
Gutsche, I. et al. Structural virology. Near-atomic cryo-EM structure of the helical measles virus nucleocapsid. Science 348, 704–707 (2015).
pubmed: 25883315
doi: 10.1126/science.aaa5137
Wan, W. et al. Structure and assembly of the Ebola virus nucleocapsid. Nature 551, 394–397 (2017).
pubmed: 29144446
pmcid: 5714281
doi: 10.1038/nature24490
Sugita, Y., Matsunami, H., Kawaoka, Y., Noda, T. & Wolf, M. Cryo-EM structure of the Ebola virus nucleoprotein-RNA complex at 3.6 Å resolution. Nature 563, 137–140 (2018).
pubmed: 30333622
doi: 10.1038/s41586-018-0630-0
Song, X. et al. Self-capping of nucleoprotein filaments protects the newcastle disease virus genome. Elife 8, 1–19 (2019).
doi: 10.7554/eLife.45057
Desfosses, A. et al. Assembly and cryo-EM structures of RNA-specific measles virus nucleocapsids provide mechanistic insight into paramyxoviral replication. Proc. Natl Acad. Sci. USA 116, 4256–4264 (2019).
pubmed: 30787192
pmcid: 6410849
doi: 10.1073/pnas.1816417116
Shan, H. et al. Structural plasticity of mumps virus nucleocapsids with cryo-EM structures. Commun. Biol. 4, 1–11 (2021).
doi: 10.1038/s42003-021-02362-0
Zhang, N. et al. Structure and assembly of double-headed Sendai virus nucleocapsids. Commun. Biol. 4, 1–10 (2021).
doi: 10.1038/s42003-021-02027-y
Zinzula, L. et al. Cryo-EM structure of the cetacean morbillivirus nucleoprotein-RNA complex. J. Struct. Biol. 213, 107750 (2021).
pubmed: 34089875
doi: 10.1016/j.jsb.2021.107750
Fujita-Fujiharu, Y. et al. Structural insight into Marburg virus nucleoprotein–RNA complex formation. Nat. Commun. 13, 1–9 (2022).
doi: 10.1038/s41467-022-28802-x
Zhou, K. et al. Atomic model of vesicular stomatitis virus and mechanism of assembly. Nat. Commun. 13, 1–27 (2022).
Ralph, A., Yeo, R. P., Murphy, L. B. & Bhella, D. Significant differences in nucleocapsid morphology within the Paramyxoviridae. J. Gen. Virol. 83, 1831–1839 (2002).
pubmed: 12124447
doi: 10.1099/0022-1317-83-8-1831
MacLellan, K., Loney, C., Yeo, R. P. & Bhella, D. The 24-angstrom structure of respiratory syncytial virus nucleocapsid protein-RNA decameric rings. J. Virol. 81, 9519–9524 (2007).
pubmed: 17567697
pmcid: 1951410
doi: 10.1128/JVI.00526-07
Bakker, S. E. et al. The respiratory syncytial virus nucleoprotein-RNA complex forms a left-handed helical nucleocapsid. J. Gen. Virol. 94, 1734–1738 (2013).
pubmed: 23677789
pmcid: 3749527
doi: 10.1099/vir.0.053025-0
Liljeroos, L., Krzyzaniak, M. A., Helenius, A. & Butcher, S. J. Architecture of respiratory syncytial virus revealed by electron cryotomography. Proc. Natl Acad. Sci. USA 110, 11133–11138 `(2013).
pubmed: 23776214
pmcid: 3703984
doi: 10.1073/pnas.1309070110
Conley, M. J. et al. Helical ordering of envelope‐associated proteins and glycoproteins in respiratory syncytial virus. EMBO J. 1–13, e109728 (2021).
Bloyet, L. M. The nucleocapsid of paramyxoviruses: structure and function of an encapsidated template. Viruses 13, 2465 (2021).
pubmed: 34960734
pmcid: 8708338
doi: 10.3390/v13122465
Li, T. & Shen, Q.-T. Insights into paramyxovirus nucleocapsids from diverse assemblies. Viruses 13, 2479 (2021).
Renner, M. et al. Nucleocapsid assembly in pneumoviruses is regulated by conformational switching of the N protein. Elife 5, 1–12 (2016).
doi: 10.7554/eLife.12627
Ker, D. S., Jenkins, H. T., Greive, S. J. & Antson, A. A. CryoEM structure of the Nipah virus nucleocapsid assembly. PLoS Pathog. 17, 1–19 (2021).
doi: 10.1371/journal.ppat.1009740
Cox, R. M. & Plemper, R. K. Structure and organization of paramyxovirus particles. Curr. Opin. Virol. 24, 105–114 (2017).
pubmed: 28601688
pmcid: 5529233
doi: 10.1016/j.coviro.2017.05.004
Loney, C., Mottet-Osman, G., Roux, L. & Bhella, D. Paramyxovirus ultrastructure and genome packaging: cryo-electron tomography of sendai virus. J. Virol. 83, 8191–8197 (2009).
pubmed: 19493999
pmcid: 2715783
doi: 10.1128/JVI.00693-09
Esneau, C. et al. Biochemical characterization of the respiratory syncytial virus N0-P complex in solution. J. Biol. Chem. 294, 3647–3660 (2019).
pubmed: 30626736
pmcid: 6416419
doi: 10.1074/jbc.RA118.006453
Caspar, D. L. D. & Holmes, K. C. Structure of dahlemense strain of tobacco mosaic virus: a periodically deformed helix. J. Mol. Biol. 46, 99–133 (1969).
pubmed: 5358645
doi: 10.1016/0022-2836(69)90060-6
Decool, H. et al. Interactions between the nucleoprotein and the phosphoprotein of pneumoviruses: structural insight for rational design of antivirals. Viruses 13, 2449 (2021).
Ghildyal, R., Ho, A. & Jans, D. A. Central role of the respiratory syncytial virus matrix protein in infection. FEMS Microbiol. Rev. 30, 692–705 (2006).
pubmed: 16911040
doi: 10.1111/j.1574-6976.2006.00025.x
Bajorek, M. et al. Tetramerization of phosphoprotein is essential for respiratory syncytial virus budding while its n-terminal region mediates direct interactions with the matrix protein. J. Virol. 95, e02217-20 (2021).
Schmitt, P. T., Ray, G. & Schmitt, A. P. The C-terminal end of parainfluenza virus 5 NP protein is important for virus-like particle production and M-NP protein interaction. J. Virol. 84, 12810–12823 (2010).
pubmed: 20943976
pmcid: 3004301
doi: 10.1128/JVI.01885-10
Ray, G., Schmitt, P. T. & Schmitt, A. P. C-terminal DxD-containing sequences within paramyxovirus nucleocapsid proteins determine matrix protein compatibility and can direct foreign proteins into budding particles. J. Virol. 90, 3650–3660 (2016).
pubmed: 26792745
pmcid: 4794684
doi: 10.1128/JVI.02673-15
Galloux, M. et al. Characterization of a viral phosphoprotein binding site on the surface of the respiratory syncytial nucleoprotein. J. Virol. 86, 8375–8387 (2012).
pubmed: 22623798
pmcid: 3421704
doi: 10.1128/JVI.00058-12
Ouizougun-Oubari, M. et al. A druggable pocket at the nucleocapsid/phosphoprotein interaction site of human respiratory syncytial virus. J. Virol. 89, 11129–11143 (2015).
pubmed: 26246564
pmcid: 4621127
doi: 10.1128/JVI.01612-15
Santangelo, P. J. & Bao, G. Dynamics of filamentous viral RNPs prior to egress. Nucleic Acids Res. 35, 3602–3611 (2007).
pubmed: 17485480
pmcid: 1920244
doi: 10.1093/nar/gkm246
Vijayakrishnan, S. et al. Ultrastructural characterization of a viral RNA and G-protein containing, membranous organelle formed in respiratory syncytial virus infected cells. bioRxiv https://www.biorxiv.org/content/10.1101/2022.11.28.517999v1 (2022).
Rincheval, V. et al. Functional organization of cytoplasmic inclusion bodies in cells infected by respiratory syncytial virus. Nat. Commun. 8, 1–11 (2017).
doi: 10.1038/s41467-017-00655-9
Galloux, M. et al. Minimal elements required for the formation of respiratory syncytial virus cytoplasmic inclusion bodies in vivo and in vitro. MBio 11, e01202-20 (2020).
Risso-Ballester, J. et al. A condensate-hardening drug blocks RSV replication in vivo. Nature 595, 596–599 (2021).
pubmed: 34234347
doi: 10.1038/s41586-021-03703-z
Castagné, N. et al. Biochemical characterization of the respiratory syncytial virus P–P and P–N protein complexes and localization of the P protein oligomerization domain. J. Gen. Virol. 85, 1643–1653 (2004).
pubmed: 15166449
doi: 10.1099/vir.0.79830-0
Jin, H. et al. Recombinant human respiratory syncytial virus (RSV) from cDNA and construction of subgroup A and B chimeric RSV. Virology 251, 206–214 (1998).
pubmed: 9813216
doi: 10.1006/viro.1998.9414
Hardy, R. W. & Wertz, G. W. The product of the respiratory syncytial virus M2 gene ORF1 enhances readthrough of intergenic junctions during viral transcription. J. Virol. 72, 520–526 (1998).
pubmed: 9420254
pmcid: 109403
doi: 10.1128/JVI.72.1.520-526.1998
Buchholz, U. J., Finke, S. & Conzelmann, K. K. Generation of bovine respiratory syncytial virus (BRSV) from cDNA: BRSV NS2 is not essential for virus replication in tissue culture, and the human RSV leader region acts as a functional BRSV genome promoter. J. Virol. 73, 251–259 (1999).
pubmed: 9847328
pmcid: 103829
doi: 10.1128/JVI.73.1.251-259.1999
Tang, G. et al. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38–46 (2007).
pubmed: 16859925
doi: 10.1016/j.jsb.2006.05.009
Wagner, T. et al. SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun. Biol. 2, 218 (2019).
pubmed: 31240256
pmcid: 6584505
doi: 10.1038/s42003-019-0437-z
Scheres, S. H. W. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).
pubmed: 23000701
pmcid: 3690530
doi: 10.1016/j.jsb.2012.09.006
Heymann, B. J. Bsoft: image processing for structural biology. Bio-Protoc. 12, e4393 (2022).
pubmed: 35800093
pmcid: 9081485
doi: 10.21769/BioProtoc.4393
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).
pubmed: 28165473
doi: 10.1038/nmeth.4169
Pettersen, E. F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
pubmed: 15264254
doi: 10.1002/jcc.20084
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D. Biol. Crystallogr. 66, 213–221 (2010).
pubmed: 20124702
pmcid: 2815670
doi: 10.1107/S0907444909052925
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D. Biol. Crystallogr. 66, 486–501 (2010).
pubmed: 20383002
pmcid: 2852313
doi: 10.1107/S0907444910007493
Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).
pubmed: 28710774
doi: 10.1002/pro.3235