Synthesis and evaluation of biological effects of modified graphene oxide nanoparticles containing Lawson (Henna extract) on gastric cancer cells.
Angiogenesis
Cancer treatment
Chitosan
Graphene oxide nanoparticles
Lawsone
Journal
Molecular biology reports
ISSN: 1573-4978
Titre abrégé: Mol Biol Rep
Pays: Netherlands
ID NLM: 0403234
Informations de publication
Date de publication:
Nov 2023
Nov 2023
Historique:
received:
21
05
2023
accepted:
04
09
2023
medline:
10
11
2023
pubmed:
16
9
2023
entrez:
15
9
2023
Statut:
ppublish
Résumé
Targeted Graphene Oxide (GO) nanoparticles can play an important role in the treatment of cancer by increasing cancer cell targeting. This study was conducted to synthesize GO nanoparticles functionalized with chitosan-folate (CS-FA) to deliver a natural product Lawsone (LA) for cancer treatment. After characterization of the LA-GO-CS-FA, antioxidant activities of the nanoparticles were investigated by ABTS, DPPH, and FRAP tests. CAM assay was used to study the effect of nanoparticles on angiogenesis. The expression level of inflammatory and angiogenic genes in cells treated with nanoparticles was evaluated by real-time PCR. The findings demonstrated the formation of nanoparticles with a size of 113.3 nm, a PDI of 0.31, and a surface charge of + 11.07 mV. The percentages of encapsulation efficiency were reported at 93%. Gastric cancer cells were reported as the most sensitive to treatment compared to the control, and the gastric cancer cells were used to study gene expression changes. The anti-angiogenic effects of nanoparticles were confirmed by reducing the average number and length of blood vessels and reducing the height and weight of embryos in the CAM assay. The reducing the expression of genes involved in angiogenesis in real-time PCR was demonstrated. Nanoparticles displayed high antioxidant properties by inhibiting DPPH and ABTS radicals and reducing iron ions in the FRAP method. The reduction of pro-inflammatory genes in AGS cells which were treated with nanoparticles indicates the anti-inflammatory properties of nanoparticles. This study showed the efficacy of nanoparticles in inhibiting gastric cancer cells by relying on inhibiting angiogenesis.
Identifiants
pubmed: 37715021
doi: 10.1007/s11033-023-08797-4
pii: 10.1007/s11033-023-08797-4
doi:
Substances chimiques
Antioxidants
0
graphene oxide
0
2,2'-azino-di-(3-ethylbenzothiazoline)-6-sulfonic acid
28752-68-3
Chitosan
9012-76-4
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
8971-8983Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature B.V.
Références
Mukherjee AK, Basu S, Sarkar N, Ghosh AC (2001) Advances in cancer therapy with plant based natural products. Curr Med Chem 8(12):1467–1486
pubmed: 11562277
doi: 10.2174/0929867013372094
Talib WH, Alsalahat I, Daoud S, Abutayeh RF, Mahmod AI (2020) Plant-derived natural products in cancer research: extraction, mechanism of action, and drug formulation. Molecules 25(22):5319
pubmed: 33202681
pmcid: 7696819
doi: 10.3390/molecules25225319
Ghorani-Azam A, Mottaghipisheh J, Amiri MS, Mashreghi M, Hashemzadeh A, Haddad-Mashadrizeh A, Nourbakhsh F, Nadaf M, Qayoomian M, Yazdi MET (2022) Resveratrol-mediated gold-nanoceria synthesis as green nanomedicine for phytotherapy of hepatocellular carcinoma. Front Biosci Landmark 27(8):227
doi: 10.31083/j.fbl2708227
Huang M, Lu J-J, Ding J (2021) Natural products in cancer therapy: past, present and future. Nat Prod Bioprospect 11:5–13
pubmed: 33389713
pmcid: 7933288
doi: 10.1007/s13659-020-00293-7
Seyedi Z, Amiri MS, Mohammadzadeh V, Hashemzadeh A, Haddad-Mashadrizeh A, Mashreghi M, Qayoomian M, Hashemzadeh MR, Simal-Gandara J, Taghavizadeh Yazdi ME (2023) Icariin: a promising natural product in biomedicine and tissue engineering. J Funct Biomater 14(1):44
pubmed: 36662090
pmcid: 9862744
doi: 10.3390/jfb14010044
Barani M, Mirzaei M, Torkzadeh-Mahani M, Nematollahi MH (2018) Lawsone-loaded niosome and its antitumor activity in MCF-7 breast cancer cell line: a nano-herbal treatment for cancer. DARU J Pharm Sci 26:11–17
doi: 10.1007/s40199-018-0207-3
Hosein HKM, Zinab D (2007) Phenolic compounds and antioxidant activity of henna leaves extracts (Lawsonia inermis). World J Dairy Food Sci 2(1):38–41
McKelvey EM, Lomedico M, Lu K, Chadwick M, Loo TL (1979) Dichloroallyl lawsone. Clin Pharmacol Ther 25(5part1):586–590
pubmed: 436360
doi: 10.1002/cpt1979255part1586
Singh RP, Ramakant N (2015) Preparation and evaluation of phytosome of lawsone. Int J Pharm Sci Res 6(12):5217–5226
Knecht W, Henseling J, Löffler M (2000) Kinetics of inhibition of human and rat dihydroorotate dehydrogenase by atovaquone, lawsone derivatives, brequinar sodium and polyporic acid. Chem Biol Interact 124(1):61–76
pubmed: 10658902
doi: 10.1016/S0009-2797(99)00144-1
López López LI, Nery Flores SD, Silva Belmares SY, Sáenz Galindo A (2014) Naphthoquinones: biological properties and synthesis of lawsone and derivatives-a structured review. Vitae 21(3):248–258
doi: 10.17533/udea.vitae.17322
Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5(3):161–171
pubmed: 15738981
doi: 10.1038/nrc1566
Zhang L, Gu F, Chan J, Wang A, Langer R, Farokhzad O (2008) Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 83(5):761–769
pubmed: 17957183
doi: 10.1038/sj.clpt.6100400
Maleki MF, Jafari A, Mirhadi E, Askarizadeh A, Golichenari B, Hadizadeh F, Moghimi SMJ, Aryan R, Mashreghi M, Jaafari MR (2019) Endogenous stimuli-responsive linkers in nanoliposomal systems for cancer drug targeting. Int J Pharm 572:118716
doi: 10.1016/j.ijpharm.2019.118716
Mirhadi E, Mashreghi M, Maleki MF, Alavizadeh SH, Arabi L, Badiee A, Jaafari MR (2020) Redox-sensitive nanoscale drug delivery systems for cancer treatment. Int J Pharm 589:119882
pubmed: 32941986
doi: 10.1016/j.ijpharm.2020.119882
Korani M, Nikoofal-Sahlabadi S, Nikpoor AR, Ghaffari S, Attar H, Mashreghi M, Jaafari MR (2020) The effect of phase transition temperature on therapeutic efficacy of liposomal bortezomib. Anti-Cancer Agents Med Chem 20(6):700–708
doi: 10.2174/1871520620666200101150640
Korani M, Ghaffari S, Attar H, Mashreghi M, Jaafari MR (2019) “Preparation and characterization of nanoliposomal bortezomib formulations and evaluation of their anti-cancer efficacy in mice bearing C26 colon carcinoma and B16F0 melanoma. Nanomed Nanotechnol Biol Med 20:102013
doi: 10.1016/j.nano.2019.04.016
Aslan B, Ozpolat B, Sood AK, Lopez-Berestein G (2013) Nanotechnology in cancer therapy. J Drug Target 21(10):904–913
pubmed: 24079419
pmcid: 4057038
doi: 10.3109/1061186X.2013.837469
Karimi M, Gheybi F, Zamani P, Mashreghi M, Golmohammadzadeh S, Darban SA, Badiee A, Jaafari MR (2020) Preparation and characterization of stable nanoliposomal formulations of curcumin with high loading efficacy: in vitro and in vivo anti-tumor study. Int J Pharm 580:119211
pubmed: 32156530
doi: 10.1016/j.ijpharm.2020.119211
Compton OC, Nguyen ST (2010) Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 6(6):711–723
pubmed: 20225186
doi: 10.1002/smll.200901934
Gaur M, Misra C, Yadav AB, Swaroop S, Maolmhuaidh FÓ, Bechelany M, Barhoum A (2021) Biomedical applications of carbon nanomaterials: fullerenes, quantum dots, nanotubes, nanofibers, and graphene. Materials 14(20):5978
pubmed: 34683568
pmcid: 8538389
doi: 10.3390/ma14205978
Feng L, Wu L, Qu X (2013) New horizons for diagnostics and therapeutic applications of graphene and graphene oxide. Adv Mater 25(2):168–186
pubmed: 23161646
doi: 10.1002/adma.201203229
Liu J, Cui L, Losic D (2013) Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater 9(12):9243–9257
pubmed: 23958782
doi: 10.1016/j.actbio.2013.08.016
Itoo AM, Vemula SL, Gupta MT, Giram MV, Kumar SA, Ghosh B, Biswas S (2022) Multifunctional graphene oxide nanoparticles for drug delivery in cancer. J Control Release 350:26–59
pubmed: 35964787
doi: 10.1016/j.jconrel.2022.08.011
Rabea EI, Badawy ME-T, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromol 4(6):1457–1465
doi: 10.1021/bm034130m
Hamedinasab H, Rezayan AH, Mellat M, Mashreghi M, Jaafari MR (2020) Development of chitosan-coated liposome for pulmonary delivery of N-acetylcysteine. Int J Biol Macromol 156:1455–1463
pubmed: 31770553
doi: 10.1016/j.ijbiomac.2019.11.190
Jain KK (2020) Role of nanobiotechnology in drug delivery. Drug Deliv Syst 2059:55–73
doi: 10.1007/978-1-4939-9798-5_2
Tagde P, Kulkarni GT, Mishra DK, Kesharwani P (2020) Recent advances in folic acid engineered nanocarriers for treatment of breast cancer. J Drug Deliv Sci Technol 56:101613
doi: 10.1016/j.jddst.2020.101613
Low PS, Henne WA, Doorneweerd DD (2008) Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc Chem Res 41(1):120–129
pubmed: 17655275
doi: 10.1021/ar7000815
Qiao X (2016) UV–vis spectral analysis of lawsone in henna powder. China Surfactant Deterg Cosmet 46:178–182
Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239(1):70–76
pubmed: 8660627
doi: 10.1006/abio.1996.0292
Liu L, Ma Q, Cao J, Gao Y, Han S, Liang Y, Zhang T, Song Y, Sun Y (2021) Recent progress of graphene oxide-based multifunctional nanomaterials for cancer treatment. Cancer Nanotechnol 12:1–31
doi: 10.1186/s12645-021-00087-7
Lv Y, Tao L, Bligh SA, Yang H, Pan Q, Zhu L (2016) Targeted delivery and controlled release of doxorubicin into cancer cells using a multifunctional graphene oxide. Mater Sci Eng, C 59:652–660
doi: 10.1016/j.msec.2015.10.065
Peña-Bahamonde J, San Miguel V, Nguyen HN, Ozisik R, Rodrigues DF, Cabanelas JC (2017) Functionalization of reduced graphene oxide with polysulfone brushes enhance antibacterial properties and reduce human cytotoxicity. Carbon 111:258–268
doi: 10.1016/j.carbon.2016.10.005
Mura P, Maestrelli F, Cirri M, Mennini N (2022) Multiple roles of chitosan in mucosal drug delivery: an updated review. Mar Drugs 20(5):335
pubmed: 35621986
pmcid: 9146108
doi: 10.3390/md20050335
Sharma H, Mondal S (2020) Functionalized graphene oxide for chemotherapeutic drug delivery and cancer treatment: a promising material in nanomedicine. Int J Mol Sci 21(17):6280
pubmed: 32872646
pmcid: 7504176
doi: 10.3390/ijms21176280
Wang Y, Li P, Kong L (2013) Chitosan-modified PLGA nanoparticles with versatile surface for improved drug delivery. AAPS PharmSciTech 14:585–592
pubmed: 23463262
pmcid: 3665987
doi: 10.1208/s12249-013-9943-3
Feng W, Wang Z (2022) Biomedical applications of chitosan-graphene oxide nanocomposites. Iscience 25(1):103629
pubmed: 35106467
doi: 10.1016/j.isci.2021.103629
Li Y, Wu H, Yang X, Jia M, Li Y, Huang Y, Lin J, Wu S, Hou Z (2014) Mitomycin C-soybean phosphatidylcholine complex-loaded self-assembled PEG-lipid-PLA hybrid nanoparticles for targeted drug delivery and dual-controlled drug release. Mol Pharm 11(8):2915–2927
pubmed: 24984984
doi: 10.1021/mp500254j
Dimiev AM, Tour JM (2014) Mechanism of graphene oxide formation. ACS Nano 8(3):3060–3068
pubmed: 24568241
doi: 10.1021/nn500606a
Yang K, Feng L, Hong H, Cai W, Liu Z (2013) Preparation and functionalization of graphene nanocomposites for biomedical applications. Nat Protoc 8(12):2392–2403
pubmed: 24202553
doi: 10.1038/nprot.2013.146
Yazdi JR, Tafaghodi M, Sadri K, Mashreghi M, Nikpoor AR, Nikoofal-Sahlabadi S, Chamani J, Vakili R, Moosavian SA, Jaafari MR (2020) Folate targeted PEGylated liposomes for the oral delivery of insulin: in vitro and in vivo studies. Colloids Surf B 194:111203
doi: 10.1016/j.colsurfb.2020.111203
Jun SW, Manivasagan P, Kwon J, Mondal S, Ly CD, Lee J, Kang Y-H, Kim C-S, Oh J (2020) Folic acid–conjugated chitosan-functionalized graphene oxide for highly efficient photoacoustic imaging-guided tumor-targeted photothermal therapy. Int J Biol Macromol 155:961–971
pubmed: 31712157
doi: 10.1016/j.ijbiomac.2019.11.055
Liu Z, Robinson JT, Sun X, Dai H (2008) PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130(33):10876–10877
pubmed: 18661992
pmcid: 2597374
doi: 10.1021/ja803688x
Zhang L, Xia J, Zhao Q, Liu L, Zhang Z (2010) Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 6(4):537–544
pubmed: 20033930
doi: 10.1002/smll.200901680
Farhangfar SD, Fesahat F, Zare-Zardini H, Dehghan-Manshadi M, Zare F, Miresmaeili SM, Vajihinejad M, Soltaninejad H (2022) In vivo study of anticancer activity of ginsenoside Rh2-containing arginine-reduced graphene in a mouse model of breast cancer. Iran J Basic Med Sci 25(12):1442
pubmed: 36544523
pmcid: 9742569
Chae SY, Park R, Hong SW (2022) Surface-mediated high antioxidant and anti-inflammatory effects of astaxanthin-loaded ultrathin graphene oxide film that inhibits the overproduction of intracellular reactive oxygen species. Biomater Res 26(1):30
pubmed: 35794645
pmcid: 9258176
doi: 10.1186/s40824-022-00276-4
Khurana R, Simons M, Martin JF, Zachary IC (2005) Role of angiogenesis in cardiovascular disease: a critical appraisal. Circulation 112(12):1813–1824
pubmed: 16172288
doi: 10.1161/CIRCULATIONAHA.105.535294
Xiong J, Yang Q, Li J, Zhou S (2014) Effects of MDM2 inhibitors on vascular endothelial growth factor-mediated tumor angiogenesis in human breast cancer. Angiogenesis 17:37–50
pubmed: 23907365
doi: 10.1007/s10456-013-9376-3
Mukherjee S, Sriram P, Barui AK, Nethi SK, Veeriah V, Chatterjee S, Suresh KI, Patra CR (2015) Graphene oxides show angiogenic properties. Adv Healthc Mater 4(11):1722–1732
pubmed: 26033847
doi: 10.1002/adhm.201500155
Shim G, Kim J-Y, Han J, Chung SW, Lee S, Byun Y, Oh Y-K (2014) Reduced graphene oxide nanosheets coated with an anti-angiogenic anticancer low-molecular-weight heparin derivative for delivery of anticancer drugs. J Control Release 189:80–89
pubmed: 24973719
doi: 10.1016/j.jconrel.2014.06.026
Carmeliet P (2005) VEGF as a key mediator of angiogenesis in cancer. Oncology 69(Suppl. 3):4–10
pubmed: 16301830
doi: 10.1159/000088478
Mashreghi M, Azarpara H, Bazaz MR, Jafari A, Masoudifar A, Mirzaei H, Jaafari MR (2018) Angiogenesis biomarkers and their targeting ligands as potential targets for tumor angiogenesis. J Cell Physiol 233(4):2949–2965
pubmed: 28608549
doi: 10.1002/jcp.26049
Miller LJ, Kurtzman SH, Anderson K, Wang Y, Stankus M, Renna M, Lindquist R, Barrows G, Kreutzer DL (2000) Interleukin-1 family expression in human breast cancer: interleukin-1 receptor antagonist. Cancer Invest 18(4):293–302
pubmed: 10808364
doi: 10.3109/07357900009012171
Pantschenko AG, Pushkar I, Anderson KH, Wang Y, Miller LJ, Kurtzman SH, Barrows G, Kreutzer DL (2003) The interleukin-1 family of cytokines and receptors in human breast cancer: implications for tumor progression. Int J Oncol 23(2):269–284
pubmed: 12851675
Singer CF, Kronsteiner N, Hudelist G, Marton E, Walter I, Kubista M, Czerwenka K, Schreiber M, Seifert M, Kubista E (2003) Interleukin 1 system and sex steroid receptor expression in human breast cancer: interleukin 1α protein secretion is correlated with malignant phenotype. Clin Cancer Res 9(13):4877–4883
pubmed: 14581361
Hefler LA, Grimm C, Lantzsch T, Lampe D, Leodolter S, Koelbl H, Heinze G, Reinthaller A, Tong-Cacsire D, Tempfer C (2005) Interleukin-1 and interleukin-6 gene polymorphisms and the risk of breast cancer in caucasian women. Clin Cancer Res 11(16):5718–5721
pubmed: 16115908
doi: 10.1158/1078-0432.CCR-05-0001
Gopinathan G, Milagre C, Pearce OM, Reynolds LE, Hodivala-Dilke K, Leinster DA, Zhong H, Hollingsworth RE, Thompson R, Whiteford JR (2015) Interleukin-6 stimulates defective angiogenesisinterleukin-6 stimulates defective angiogenesis. Can Res 75(15):3098–3107
doi: 10.1158/0008-5472.CAN-15-1227