Evidence that the domesticated fungus Leucoagaricus gongylophorus recycles its cytoplasmic contents as nutritional rewards to feed its leafcutter ant farmers.
Autophagy
Fungus
Gongylidia
Leafcutter ant
Leucoagaricus gongylophorus
Symbiosis
Journal
IMA fungus
ISSN: 2210-6340
Titre abrégé: IMA Fungus
Pays: England
ID NLM: 101557546
Informations de publication
Date de publication:
15 Sep 2023
15 Sep 2023
Historique:
received:
26
01
2023
accepted:
22
08
2023
medline:
16
9
2023
pubmed:
16
9
2023
entrez:
15
9
2023
Statut:
epublish
Résumé
Leafcutter ants farm a fungal cultivar (Leucoagaricus gongylophorus) that converts inedible vegetation into food that sustains colonies with up to millions of workers. Analogous to edible fruits of crops domesticated by humans, L. gongylophorus has evolved specialized nutritional rewards-swollen hyphal cells called gongylidia that package metabolites and are consumed by ant farmers. Yet, little is known about how gongylidia form, and thus how fungal physiology and ant provisioning collectively govern farming performance. We explored the process of gongylidium formation using advanced microscopy to image the cultivar at scales of nanometers, and both in vitro experiments and in silico analyses to examine the mechanisms of gongylidia formation when isolated from ant farmers. We first used transmission electron, fluorescence, and confocal microscopy imaging to see inside hyphal cells. This imaging showed that the cultivar uses a process called autophagy to recycle its own cellular material (e.g. cytosol, mitochondria) and then shuttles the resulting metabolites into a vacuole whose continual expansion displaces other organelles and causes the gongylidium cell's bulging bulb-like appearance. We next used scanning electron microscopy and light microscopy to link this intracellular rearrangement to the external branching patterns of gongylidium cells as they clump together into edible bundles called staphyla. We next confirmed that autophagy plays a critical role in gongylidium formation both: (1) in vitro as gongylidium suppression occurred when isolated fungal cultures were grown on media with autophagy inhibitors, and (2) in silico as differential transcript expression (RNA-seq) analyses showed upregulation of multiple autophagy gene isoforms in gongylidia relative to undifferentiated hyphae. While autophagy is a ubiquitous and often highly derived process across the tree of life, our study reveals a new role for autophagy as a mechanism of functional integration between ant farmers and their fungal crop, and potentially as a signifier of higher-level homeostasis between uniquely life-time committed ectosymbionts.
Identifiants
pubmed: 37715276
doi: 10.1186/s43008-023-00126-5
pii: 10.1186/s43008-023-00126-5
pmc: PMC10503033
doi:
Types de publication
Journal Article
Langues
eng
Pagination
19Subventions
Organisme : European Research Council
ID : ERC-2017-STG-757810
Pays : International
Informations de copyright
© 2023. International Mycological Association.
Références
mSystems. 2021 Mar 23;6(2):
pubmed: 33758033
Science. 1966 Aug 5;153(3736):587-604
pubmed: 17757227
Nat Biotechnol. 2011 May 15;29(7):644-52
pubmed: 21572440
Nat Genet. 2019 Mar;51(3):541-547
pubmed: 30804557
J Cell Sci. 2003 Nov 15;116(Pt 22):4501-12
pubmed: 14576344
J Cell Biol. 1994 Oct;127(1):139-149
pubmed: 7929559
J Chem Ecol. 1988 Jan;14(1):59-69
pubmed: 24276994
Biol Rev Camb Philos Soc. 2018 Feb;93(1):28-54
pubmed: 28508537
Q Rev Biol. 2001 Jun;76(2):169-97
pubmed: 11409051
Sci Rep. 2020 Feb 6;10(1):1929
pubmed: 32029847
Proc Biol Sci. 2010 May 22;277(1687):1481-8
pubmed: 20071379
Proc Natl Acad Sci U S A. 2021 Jun 8;118(23):
pubmed: 34031154
Bioinformatics. 2012 Dec 1;28(23):3150-2
pubmed: 23060610
Nat Commun. 2014 Dec 01;5:5675
pubmed: 25435021
BMC Bioinformatics. 2011 Apr 28;12:124
pubmed: 21526987
J Biol Chem. 2010 Apr 2;285(14):10850-61
pubmed: 20123989
Science. 1970 Jul 3;169(3940):16-20
pubmed: 5447529
Genome Biol. 2014;15(12):550
pubmed: 25516281
PLoS One. 2015 Aug 28;10(8):e0134752
pubmed: 26317212
Ecology. 2022 Jun;103(6):e3684
pubmed: 35315052
Curr Biol. 2017 Sep 11;27(17):R896-R900
pubmed: 28898661
ISME J. 2014 May;8(5):1032-40
pubmed: 24401858
Elife. 2021 Jan 12;10:
pubmed: 33433325
Nat Commun. 2016 Jul 20;7:12233
pubmed: 27436133
J Evol Biol. 2010 Dec;23(12):2507-28
pubmed: 20942825
Ecology. 2018 Sep;99(9):1999-2009
pubmed: 30067862
J Biol Chem. 1998 Feb 13;273(7):3963-6
pubmed: 9461583
Dev Cell. 2004 Apr;6(4):463-77
pubmed: 15068787
Antioxid Redox Signal. 2011 Jun;14(11):2271-87
pubmed: 20712412
Nat Rev Genet. 2005 Nov;6(11):836-46
pubmed: 16304599
Science. 1981 Mar 27;211(4489):1390-6
pubmed: 7466396
Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2100-4
pubmed: 8134356
Ecol Lett. 2021 Nov;24(11):2439-2451
pubmed: 34418263
Proc Biol Sci. 1996 Mar 22;263(1368):339-44
pubmed: 8920255
BMC Bioinformatics. 2011 Aug 04;12:323
pubmed: 21816040
Mol Microbiol. 2003 Jan;47(2):321-33
pubmed: 12519185
Trends Ecol Evol. 2019 Dec;34(12):1137-1151
pubmed: 31488326
Proc Natl Acad Sci U S A. 2018 Apr 24;115(17):4429-4434
pubmed: 29643074
Nature. 2003 Sep 4;425(6953):78-81
pubmed: 12955144
Autophagy. 2021 Jan;17(1):1-382
pubmed: 33634751
Eukaryot Cell. 2006 Aug;5(8):1328-36
pubmed: 16896216
BMC Genomics. 2013 Dec 28;14:928
pubmed: 24373541
BMC Biol. 2010 Dec 31;8:156
pubmed: 21194476
J Exp Bot. 2018 Mar 14;69(6):1301-1311
pubmed: 29309625
J Mol Biol. 2016 Feb 22;428(4):726-731
pubmed: 26585406
Nat Methods. 2015 Jan;12(1):59-60
pubmed: 25402007
Semin Cell Dev Biol. 2018 Oct;82:3-16
pubmed: 29241689
Nucleic Acids Res. 2000 Jan 1;28(1):27-30
pubmed: 10592173
Proc Natl Acad Sci U S A. 2008 Apr 8;105(14):5435-40
pubmed: 18362345
Autophagy. 2012 Oct;8(10):1415-25
pubmed: 22935638
Autophagy. 2018;14(8):1435-1455
pubmed: 29940786
Nat Methods. 2012 Jul;9(7):671-5
pubmed: 22930834
Proc Natl Acad Sci U S A. 2013 Jan 8;110(2):583-7
pubmed: 23267060
Trends Ecol Evol. 2015 Aug;30(8):463-9
pubmed: 26138385
Nat Ecol Evol. 2021 Jan;5(1):122-134
pubmed: 33106603
BMC Bioinformatics. 2009 Dec 15;10:421
pubmed: 20003500
J Evol Biol. 2015 Nov;28(11):1911-24
pubmed: 26265100
Bioinformatics. 2020 Apr 1;36(7):2251-2252
pubmed: 31742321