Revealing a Double-Volcano-Like Structure-Activity Relationship for Substitution-Functionalized Metal-Phthalocyanine Catalysts toward Electrochemical CO

CO2RR catalytic mechanism electrocatalysis electronic structures molecular catalysts

Journal

Small (Weinheim an der Bergstrasse, Germany)
ISSN: 1613-6829
Titre abrégé: Small
Pays: Germany
ID NLM: 101235338

Informations de publication

Date de publication:
15 Sep 2023
Historique:
revised: 21 08 2023
received: 20 07 2023
medline: 16 9 2023
pubmed: 16 9 2023
entrez: 16 9 2023
Statut: aheadofprint

Résumé

Electron-donating/-withdrawing groups (EDGs/EWGs) substitution is widely used to regulate the catalytic performance of transition-metal phthalocyanine (MPc) toward electrochemical CO

Identifiants

pubmed: 37715327
doi: 10.1002/smll.202306144
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e2306144

Subventions

Organisme : National Natural Science Foundation of China
ID : 51972345
Organisme : National Natural Science Foundation of China
ID : 22278444
Organisme : Natural Science Foundation of Hunan Province
ID : 2021JJ30790
Organisme : Hunan Provincial Science and Technology
ID : 2018RS3008

Informations de copyright

© 2023 Wiley-VCH GmbH.

Références

a) Y. Y. Birdja, E. Pérez-Gallent, M. C. Figueiredo, A. J. Göttle, F. Calle-Vallejo, M. T. M. Koper, Nat. Energy 2019, 4, 732;
b) M. Bui, C. S. Adjiman, A. Bardow, E. J. Anthony, A. Boston, S. Brown, P. S. Fennell, S. Fuss, A. Galindo, L. A. Hackett, J. P. Hallett, H. J. Herzog, G. Jackson, J. Kemper, S. Krevor, G. C. Maitland, M. Matuszewski, I. S. Metcalfe, C. Petit, G. Puxty, J. Reimer, D. M. Reiner, E. S. Rubin, S. A. Scott, N. Shah, B. Smit, J. P. M. Trusler, P. Webley, J. Wilcox, N. M. Dowell, Energy Environ. Sci. 2018, 11, 1062;
c) W. Zhu, K. Zhao, S. Liu, M. Liu, F. Peng, P. An, B. Qin, H. Zhou, H. Li, Z. He, J. Energy Chem. 2019, 37, 176;
d) S. Chu, Y. Cui, N. Liu, Nat. Mater. 2016, 16, 16;
e) S. Zhang, X.-T. Gao, P.-F. Hou, T.-R. Zhang, P. Kang, Rare Met. 2021, 40, 3117.
a) T. Lin, Y. An, F. Yu, K. Gong, H. Yu, C. Wang, Y. Sun, L. Zhong, ACS Catal. 2022, 12, 12092;
b) M. Wang, K. Torbensen, D. Salvatore, S. Ren, D. Joulié, F. Dumoulin, D. Mendoza, B. Lassalle-Kaiser, U. Işci, C. P. Berlinguette, M. Robert, Nat. Commun. 2019, 10, 3602;
c) R.-B. Song, W. Zhu, J. Fu, Y. Chen, L. Liu, J.-R. Zhang, Y. Lin, J.-J. Zhu, Adv. Mater. 2020, 32, 1903796;
d) J. Wu, T. Sharifi, Y. Gao, T. Zhang, P. M. Ajayan, Adv. Mater. 2019, 31, 1804257;
e) R. Shi, J. Guo, X. Zhang, G. I. N. Waterhouse, Z. Han, Y. Zhao, L. Shang, C. Zhou, L. Jiang, T. Zhang, Nat. Commun. 2020, 11, 3028.
a) J. Gu, C.-S. Hsu, L. Bai, H. M. Chen, X. Hu, Science 2019, 364, 1091;
b) S. Ren, D. Joulié, D. Salvatore, K. Torbensen, M. Wang, M. Robert, C. P. Berlinguette, Science 2019, 365, 367;
c) X. Zhang, Y. Wang, M. Gu, M. Wang, Z. Zhang, W. Pan, Z. Jiang, H. Zheng, M. Lucero, H. Wang, G. E. Sterbinsky, Q. Ma, Y.-G. Wang, Z. Feng, J. Li, H. Dai, Y. Liang, Nat. Energy 2020, 5, 684;
d) X. Wu, J. W. Sun, P. F. Liu, J. Y. Zhao, Y. Liu, L. Guo, S. Dai, H. G. Yang, H. Zhao, Adv. Funct. Mater. 2022, 32, 2107301;
e) F. Lv, N. Han, Y. Qiu, X. Liu, J. Luo, Y. Li, Coord. Chem. Rev. 2020, 422, 213435;
f) R. Shi, T. Zhang, Sci. Bull. 2020, 65, 781.
a) G. Kour, X. Mao, A. Du, J. Phys. Chem. C 2020, 124, 7708;
b) K. Chen, M. Cao, G. Ni, S. Chen, H. Liao, L. Zhu, H. Li, J. Fu, J. Hu, E. Cortés, M. Liu, Appl. Catal. B 2022, 306, 121093;
c) X. Lu, H. A. Ahsaine, B. Dereli, A. T. Garcia-Esparza, M. Reinhard, T. Shinagawa, D. Li, K. Adil, M. R. Tchalala, T. Kroll, M. Eddaoudi, D. Sokaras, L. Cavallo, K. Takanabe, ACS Catal. 2021, 11, 6499;
d) Z. Zhang, J. Xiao, X. J. Chen, S. Yu, L. Yu, R. Si, Y. Wang, S. Wang, X. Meng, Y. Wang, Z. Q. Tian, D. Deng, Angew. Chem., Int. Ed. Engl. 2018, 57, 16339.
L. Gong, D. Zhang, C. Y. Lin, Y. Zhu, Y. Shen, J. Zhang, X. Han, L. Zhang, Z. Xia, Adv. Energy Mater. 2019, 9, 1902625.
a) X. Zhang, Z. Wu, X. Zhang, L. Li, Y. Li, H. Xu, X. Li, X. Yu, Z. Zhang, Y. Liang, H. Wang, Nat. Commun. 2017, 8, 14675;
b) K.-M. Zhao, S. Liu, Y.-Y. Li, X. Wei, G. Ye, W. Zhu, Y. Su, J. Wang, H. Liu, Z. He, Z.-Y. Zhou, S.-G. Sun, Adv. Energy Mater. 2022, 12, 2103588;
c) K. Chen, M. Cao, Y. Lin, J. Fu, H. Liao, Y. Zhou, H. Li, X. Qiu, J. Hu, X. Zheng, M. Shakouri, Q. Xiao, Y. Hu, J. Li, J. Liu, E. Cortés, M. Liu, Adv. Funct. Mater. 2022, 32, 2111322;
d) N. Morlanés, K. Takanabe, V. Rodionov, ACS Catal. 2016, 6, 3092.
Z. Zhang, Y.-G. Wang, J. Phys. Chem. C 2021, 125, 13836.
T. Wang, L. Zhou, S. Xia, L. Yu, J. Phys. Chem. C 2023, 127, 2963.
a) I. C. Stefan, Y. Mo, S. Y. Ha, S. Kim, D. A. Scherson, Inorg. Chem. 2003, 42, 4316;
b) W.-T. Chen, C.-W. Hsu, J.-F. Lee, C.-W. Pao, I. J. Hsu, ACS Omega 2020, 5, 4991.
a) M.-S. Liao, S. Scheiner, J. Phys. Chem. 2001, 114, 9780;
b) S. C. Mathur, J. Singh, Int. J. Quantum Chem. 1972, 6, 57;
c) S. C. Mathur, J. Singh, Int. J. Quantum Chem. 2010, 6, 747.
T. Lu, F. Chen, Acta Chim. Sinica 2011, 69, 2393.
A. Rauk, Orbital Interaction Theory of Organic Chemistry, John Wiley & Sons, Hoboken, 2000.
L. Ma, N. Liu, B. Mei, K. Yang, B. Liu, K. Deng, Y. Zhang, H. Feng, D. Liu, J. Duan, Z. Jiang, H. Yang, Q. Li, ACS Catal. 2022, 12, 8601.
I. V. Chernyshova, P. Somasundaran, S. Ponnurangam, Proc. Natl. Acad. Sci. U. S. A. 2018, 115, E9261.
a) W. Shan, R. Liu, H. Zhao, Z. He, Y. Lai, S. Li, G. He, J. Liu, ACS Nano 2020, 14, 11363;
b) P. Li, J. Bi, J. Liu, Y. Wang, X. Kang, X. Sun, J. Zhang, Z. Liu, Q. Zhu, B. Han, J. Am. Chem. Soc. 2023, 145, 4675.
K. Nakamoto, in Handbook of Vibrational Spectroscopy, Vol. 1 (Eds: J. M. Chalmers, P. R. Griffiths), John Wiley & Sons, Ltd, Chichester UK, 2006, Ch. 3, https://doi.org/10.1002/0470027320.s4104.
Z. Chen, S. Jiang, G. Kang, D. Nguyen, G. C. Schatz, R. P. Van Duyne, J. Am. Chem. Soc. 2019, 141, 15684.
a) H.-J. Lee, M. D. Lloyd, K. Harlos, I. J. Clifton, J. E. Baldwin, C. J. Schofield, J. Mol. Biol. 2001, 308, 937;
b) I. Castro-Rodriguez, H. Nakai, L. N. Zakharov, A. L. Rheingold, K. Meyer, Science 2004, 305, 1757.

Auteurs

Weiwei Zhu (W)

College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University, Changsha, Hunan, 410083, P. R. China.

Suqin Liu (S)

College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University, Changsha, Hunan, 410083, P. R. China.

Kuangmin Zhao (K)

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China.

Guanying Ye (G)

College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University, Changsha, Hunan, 410083, P. R. China.

Kui Huang (K)

College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University, Changsha, Hunan, 410083, P. R. China.

Zhen He (Z)

College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University, Changsha, Hunan, 410083, P. R. China.

Classifications MeSH