Revealing a Double-Volcano-Like Structure-Activity Relationship for Substitution-Functionalized Metal-Phthalocyanine Catalysts toward Electrochemical CO
CO2RR
catalytic mechanism
electrocatalysis
electronic structures
molecular catalysts
Journal
Small (Weinheim an der Bergstrasse, Germany)
ISSN: 1613-6829
Titre abrégé: Small
Pays: Germany
ID NLM: 101235338
Informations de publication
Date de publication:
15 Sep 2023
15 Sep 2023
Historique:
revised:
21
08
2023
received:
20
07
2023
medline:
16
9
2023
pubmed:
16
9
2023
entrez:
16
9
2023
Statut:
aheadofprint
Résumé
Electron-donating/-withdrawing groups (EDGs/EWGs) substitution is widely used to regulate the catalytic performance of transition-metal phthalocyanine (MPc) toward electrochemical CO
Identifiants
pubmed: 37715327
doi: 10.1002/smll.202306144
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2306144Subventions
Organisme : National Natural Science Foundation of China
ID : 51972345
Organisme : National Natural Science Foundation of China
ID : 22278444
Organisme : Natural Science Foundation of Hunan Province
ID : 2021JJ30790
Organisme : Hunan Provincial Science and Technology
ID : 2018RS3008
Informations de copyright
© 2023 Wiley-VCH GmbH.
Références
a) Y. Y. Birdja, E. Pérez-Gallent, M. C. Figueiredo, A. J. Göttle, F. Calle-Vallejo, M. T. M. Koper, Nat. Energy 2019, 4, 732;
b) M. Bui, C. S. Adjiman, A. Bardow, E. J. Anthony, A. Boston, S. Brown, P. S. Fennell, S. Fuss, A. Galindo, L. A. Hackett, J. P. Hallett, H. J. Herzog, G. Jackson, J. Kemper, S. Krevor, G. C. Maitland, M. Matuszewski, I. S. Metcalfe, C. Petit, G. Puxty, J. Reimer, D. M. Reiner, E. S. Rubin, S. A. Scott, N. Shah, B. Smit, J. P. M. Trusler, P. Webley, J. Wilcox, N. M. Dowell, Energy Environ. Sci. 2018, 11, 1062;
c) W. Zhu, K. Zhao, S. Liu, M. Liu, F. Peng, P. An, B. Qin, H. Zhou, H. Li, Z. He, J. Energy Chem. 2019, 37, 176;
d) S. Chu, Y. Cui, N. Liu, Nat. Mater. 2016, 16, 16;
e) S. Zhang, X.-T. Gao, P.-F. Hou, T.-R. Zhang, P. Kang, Rare Met. 2021, 40, 3117.
a) T. Lin, Y. An, F. Yu, K. Gong, H. Yu, C. Wang, Y. Sun, L. Zhong, ACS Catal. 2022, 12, 12092;
b) M. Wang, K. Torbensen, D. Salvatore, S. Ren, D. Joulié, F. Dumoulin, D. Mendoza, B. Lassalle-Kaiser, U. Işci, C. P. Berlinguette, M. Robert, Nat. Commun. 2019, 10, 3602;
c) R.-B. Song, W. Zhu, J. Fu, Y. Chen, L. Liu, J.-R. Zhang, Y. Lin, J.-J. Zhu, Adv. Mater. 2020, 32, 1903796;
d) J. Wu, T. Sharifi, Y. Gao, T. Zhang, P. M. Ajayan, Adv. Mater. 2019, 31, 1804257;
e) R. Shi, J. Guo, X. Zhang, G. I. N. Waterhouse, Z. Han, Y. Zhao, L. Shang, C. Zhou, L. Jiang, T. Zhang, Nat. Commun. 2020, 11, 3028.
a) J. Gu, C.-S. Hsu, L. Bai, H. M. Chen, X. Hu, Science 2019, 364, 1091;
b) S. Ren, D. Joulié, D. Salvatore, K. Torbensen, M. Wang, M. Robert, C. P. Berlinguette, Science 2019, 365, 367;
c) X. Zhang, Y. Wang, M. Gu, M. Wang, Z. Zhang, W. Pan, Z. Jiang, H. Zheng, M. Lucero, H. Wang, G. E. Sterbinsky, Q. Ma, Y.-G. Wang, Z. Feng, J. Li, H. Dai, Y. Liang, Nat. Energy 2020, 5, 684;
d) X. Wu, J. W. Sun, P. F. Liu, J. Y. Zhao, Y. Liu, L. Guo, S. Dai, H. G. Yang, H. Zhao, Adv. Funct. Mater. 2022, 32, 2107301;
e) F. Lv, N. Han, Y. Qiu, X. Liu, J. Luo, Y. Li, Coord. Chem. Rev. 2020, 422, 213435;
f) R. Shi, T. Zhang, Sci. Bull. 2020, 65, 781.
a) G. Kour, X. Mao, A. Du, J. Phys. Chem. C 2020, 124, 7708;
b) K. Chen, M. Cao, G. Ni, S. Chen, H. Liao, L. Zhu, H. Li, J. Fu, J. Hu, E. Cortés, M. Liu, Appl. Catal. B 2022, 306, 121093;
c) X. Lu, H. A. Ahsaine, B. Dereli, A. T. Garcia-Esparza, M. Reinhard, T. Shinagawa, D. Li, K. Adil, M. R. Tchalala, T. Kroll, M. Eddaoudi, D. Sokaras, L. Cavallo, K. Takanabe, ACS Catal. 2021, 11, 6499;
d) Z. Zhang, J. Xiao, X. J. Chen, S. Yu, L. Yu, R. Si, Y. Wang, S. Wang, X. Meng, Y. Wang, Z. Q. Tian, D. Deng, Angew. Chem., Int. Ed. Engl. 2018, 57, 16339.
L. Gong, D. Zhang, C. Y. Lin, Y. Zhu, Y. Shen, J. Zhang, X. Han, L. Zhang, Z. Xia, Adv. Energy Mater. 2019, 9, 1902625.
a) X. Zhang, Z. Wu, X. Zhang, L. Li, Y. Li, H. Xu, X. Li, X. Yu, Z. Zhang, Y. Liang, H. Wang, Nat. Commun. 2017, 8, 14675;
b) K.-M. Zhao, S. Liu, Y.-Y. Li, X. Wei, G. Ye, W. Zhu, Y. Su, J. Wang, H. Liu, Z. He, Z.-Y. Zhou, S.-G. Sun, Adv. Energy Mater. 2022, 12, 2103588;
c) K. Chen, M. Cao, Y. Lin, J. Fu, H. Liao, Y. Zhou, H. Li, X. Qiu, J. Hu, X. Zheng, M. Shakouri, Q. Xiao, Y. Hu, J. Li, J. Liu, E. Cortés, M. Liu, Adv. Funct. Mater. 2022, 32, 2111322;
d) N. Morlanés, K. Takanabe, V. Rodionov, ACS Catal. 2016, 6, 3092.
Z. Zhang, Y.-G. Wang, J. Phys. Chem. C 2021, 125, 13836.
T. Wang, L. Zhou, S. Xia, L. Yu, J. Phys. Chem. C 2023, 127, 2963.
a) I. C. Stefan, Y. Mo, S. Y. Ha, S. Kim, D. A. Scherson, Inorg. Chem. 2003, 42, 4316;
b) W.-T. Chen, C.-W. Hsu, J.-F. Lee, C.-W. Pao, I. J. Hsu, ACS Omega 2020, 5, 4991.
a) M.-S. Liao, S. Scheiner, J. Phys. Chem. 2001, 114, 9780;
b) S. C. Mathur, J. Singh, Int. J. Quantum Chem. 1972, 6, 57;
c) S. C. Mathur, J. Singh, Int. J. Quantum Chem. 2010, 6, 747.
T. Lu, F. Chen, Acta Chim. Sinica 2011, 69, 2393.
A. Rauk, Orbital Interaction Theory of Organic Chemistry, John Wiley & Sons, Hoboken, 2000.
L. Ma, N. Liu, B. Mei, K. Yang, B. Liu, K. Deng, Y. Zhang, H. Feng, D. Liu, J. Duan, Z. Jiang, H. Yang, Q. Li, ACS Catal. 2022, 12, 8601.
I. V. Chernyshova, P. Somasundaran, S. Ponnurangam, Proc. Natl. Acad. Sci. U. S. A. 2018, 115, E9261.
a) W. Shan, R. Liu, H. Zhao, Z. He, Y. Lai, S. Li, G. He, J. Liu, ACS Nano 2020, 14, 11363;
b) P. Li, J. Bi, J. Liu, Y. Wang, X. Kang, X. Sun, J. Zhang, Z. Liu, Q. Zhu, B. Han, J. Am. Chem. Soc. 2023, 145, 4675.
K. Nakamoto, in Handbook of Vibrational Spectroscopy, Vol. 1 (Eds: J. M. Chalmers, P. R. Griffiths), John Wiley & Sons, Ltd, Chichester UK, 2006, Ch. 3, https://doi.org/10.1002/0470027320.s4104.
Z. Chen, S. Jiang, G. Kang, D. Nguyen, G. C. Schatz, R. P. Van Duyne, J. Am. Chem. Soc. 2019, 141, 15684.
a) H.-J. Lee, M. D. Lloyd, K. Harlos, I. J. Clifton, J. E. Baldwin, C. J. Schofield, J. Mol. Biol. 2001, 308, 937;
b) I. Castro-Rodriguez, H. Nakai, L. N. Zakharov, A. L. Rheingold, K. Meyer, Science 2004, 305, 1757.