Impact of the Spatial Velocity Inlet Distribution on the Hemodynamics of the Thoracic Aorta.


Journal

Cardiovascular engineering and technology
ISSN: 1869-4098
Titre abrégé: Cardiovasc Eng Technol
Pays: United States
ID NLM: 101531846

Informations de publication

Date de publication:
10 2023
Historique:
received: 21 01 2022
accepted: 01 09 2023
medline: 30 10 2023
pubmed: 20 9 2023
entrez: 19 9 2023
Statut: ppublish

Résumé

The impact of the distribution in space of the inlet velocity in the numerical simulations of the hemodynamics in the thoracic aorta is systematically investigated. A real healthy aorta geometry, for which in-vivo measurements are available, is considered. The distribution is modeled through a truncated cone shape, which is a suitable approximation of the real one downstream of a trileaflet aortic valve during the systolic part of the cardiac cycle. The ratio between the upper and the lower base of the truncated cone and the position of the center of the upper base are selected as uncertain parameters. A stochastic approach is chosen, based on the generalized Polynomial Chaos expansion, to obtain accurate response surfaces of the quantities of interest in the parameter space. The selected parameters influence the velocity distribution in the ascending aorta. Consequently, effects on the wall shear stress are observed, confirming the need to use patient-specific inlet conditions if interested in the hemodynamics of this region. The surface base ratio is globally the most important parameter. Conversely, the impact on the velocity and wall shear stress in the aortic arch and descending aorta is almost negligible.

Identifiants

pubmed: 37726567
doi: 10.1007/s13239-023-00682-2
pii: 10.1007/s13239-023-00682-2
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

713-725

Subventions

Organisme : Marie Curie
ID : 859836
Pays : United Kingdom

Informations de copyright

© 2023. The Author(s) under exclusive licence to Biomedical Engineering Society.

Références

Capellini, K., E. Vignali, E. Costa, E. Gasparotti, M. E. Biancolini, L. Landini, V. Positano, and S. Celi. Computational fluid dynamic study for aTAA hemodynamics: an integrated image-based and radial basis functions mesh morphing approach. J. Biomech. Eng. 140(11):111007, 2018.
doi: 10.1115/1.4040940 pubmed: 30098137
Capellini, K., E. Gasparotti, U. Cella, E. Costa, B. M. Fanni, C. Groth, S. Porziani, M. E. Biancolini, and S. Celi. A novel formulation for the study of the ascending aortic fluid dynamics with in vivo data. Med. Eng. Phys. 91:68–78, 2021.
pubmed: 33008714
Gallo, D., G. De Santis, F. Negri, D. Tresoldi, R. Ponzini, D. Massai, M. A. Deriu, P. Segers, B. Verhegghe, G. Rizzo, and U. Morbiducci. On the use of in vivo measured flow rates as boundary conditions for image-based hemodynamic models of the human aorta: Implications for indicators of abnormal flow. Ann. Biomed. Eng. 40(3):729–741, 2012.
doi: 10.1007/s10439-011-0431-1 pubmed: 22009313
Morbiducci, U., R. Ponzini, D. Gallo, C. Bignardi, and G. Rizzo. Inflow boundary conditions for image-based computational hemodynamics: impact of idealized versus measured velocity profiles in the human aorta. J. Biomech. 46(1):102–109, 2013.
doi: 10.1016/j.jbiomech.2012.10.012 pubmed: 23159094
Boccadifuoco, A., A. Mariotti, S. Celi, N. Martini, and M. V. Salvetti. Impact of uncertainties in outflow boundary conditions on the predictions of hemodynamic simulations of ascending thoracic aortic aneurysms. Comput. Fluids. 165:96–115, 2018.
doi: 10.1016/j.compfluid.2018.01.012
Boccadifuoco, A., A. Mariotti, K. Capellini, S. Celi, and M. V. Salvetti. Validation of numerical simulations of thoracic aorta hemodynamics: comparison with In Vivo measurements and stochastic sensitivity analysis. Cardiovasc. Eng. Technol. 9(4):688–706, 2018.
doi: 10.1007/s13239-018-00387-x pubmed: 30357714
Antonuccio, M. N., A. Mariotti, S. Celi, M. V. Salvetti: Effects of the distribution in space of the velocity-inlet condition in hemodynamic simulations of the thoracic aorta. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 12108, pp. 63– 74 (2020)
Antonuccio, M. N., A. Mariotti, B. M. Fanni, K. Capellini, C. Capelli, E. Sauvage, and S. Celi. Effects of uncertainty of outlet boundary conditions in a patient-specific case of aortic coarctation. Ann. Biomed. Eng. 49(12):3494–3507, 2021. https://doi.org/10.1007/s10439-021-02841-9 .
doi: 10.1007/s10439-021-02841-9 pubmed: 34431017 pmcid: 8671284
Mariotti, A., A. Boccadifuoco, S. Celi, and M. V. Salvetti. Hemodynamics and stresses in numerical simulations of the thoracic aorta: stochastic sensitivity analysis to inlet flow-rate waveform. Comput. Fluids. 230:105123, 2021.
doi: 10.1016/j.compfluid.2021.105123
Youssefi, P., A. Gomez, C. Arthurs, R. Sharma, M. Jahangiri, and C. A. Figueroa. Impact of patient-specific inflow velocity profile on hemodynamics of the thoracic aorta. J. Biomech. Eng. 140(1):1011002, 2018.
doi: 10.1115/1.4037857
San, O., and A. E. Staples. An improved model for reduced-order physiological fluid flows. J. Mech. Med. Biol. 12(3):1250052, 2012.
doi: 10.1142/S0219519411004666
Haugen, B. O., S. Berg, K. M. Brecke, H. Torp, S. A. Slørdahl, T. Skjærpe, and S. O. Samstad. Blood flow velocity profiles in the aortic annulus: a 3-dimensional freehand color flow doppler imaging study. J. Am. Soc. Echocardiogr. 15(4):328–333, 2002.
doi: 10.1067/mje.2002.117292 pubmed: 11944010
Sigovan, M., P. Dyverfeldt, J. Wrenn, E. E. Tseng, D. Saloner, and M. D. Hope. Extended 3D approach for quantification of abnormal ascending aortic flow. Magn. Reson. Imaging. 33:695–700, 2015.
doi: 10.1016/j.mri.2015.02.020 pubmed: 25721998 pmcid: 4426228
Xu, L., L. Yin, Y. Liu, and F. Liang. A computational study on the influence of aortic valve disease on hemodynamics in dilated aorta. Math. Biosci. Eng. 17(1):606–626, 2020.
doi: 10.3934/mbe.2020031
Chandra, S., S. S. Raut, A. Jana, R. W. Biederman, M. Doyle, S. C. Muluk, and E. A. Finol. Fluid-structure interaction modeling of abdominal aortic aneurysms: the impact of patient-specific inflow conditions and fluid/solid coupling. ASME J. Biomech. Eng. 135(8):081001, 2013.
doi: 10.1115/1.4024275
Lodi Rizzini, M., D. Gallo, G. De Nisco, F. D’Ascenzo, C. Chiastra, P. P. Bocchino, F. Piroli, G. M. De Ferrari, and U. Morbiducci. Does the inflow velocity profile influence physiologically relevant flow patterns in computational hemodynamic models of left anterior descending coronary artery? Med. Eng. Phys. 82:58–69, 2020.
doi: 10.1016/j.medengphy.2020.07.001 pubmed: 32709266
Madhavan, S., and E. M. C. Kemmerling. The effect of inlet and outlet boundary conditions in image-based CFD modeling of aortic flow. BioMed. Eng. OnLine. 17:66, 2018.
doi: 10.1186/s12938-018-0497-1 pubmed: 29843730 pmcid: 5975715
Armour, C. H., B. Guo, S. Pirola, S. Saitta, Y. Liu, Z. Dong, and X. Y. Xu. The influence of inlet velocity profile on predicted flow in type b aortic dissection. Biomech. Model. Mechanobiol. 20(2):481–490, 2021.
doi: 10.1007/s10237-020-01395-4 pubmed: 33068193
Updegrove, A., N. M. Wilson, J. Merkow, H. Lan, A. L. Marsden, and S. C. Shadden. SimVascular: an open source pipeline for cardiovascular simulation. Ann. Biomed. Eng. 45:525–541, 2016.
doi: 10.1007/s10439-016-1762-8 pubmed: 27933407 pmcid: 6546171
Masri, A., L. G. Svensson, B. P. Griffin, and M. Y. Desai. Contemporary natural history of bicuspid aortic valve disease: a systematic review. Heart. 103(17):1323–1330, 2017.
doi: 10.1136/heartjnl-2016-309916 pubmed: 28490615
Xu, L., T. Yang, L. Yin, Y. Kong, Y. Vassilevski, and F. Liang. Numerical simulation of blood flow in aorta with dilation: a comparison between laminar and LES modeling methods. CMES Comput. Model. Eng. Sci. 124(2):509–526, 2020.
Whiting, C. H., and K. E. Jansen. A stabilized finite element method for the incompressible Navier-Stokes equations using a hierarchical basis. Int. J. Numer. Methods Fluids. 35(1):93–116, 2001.
doi: 10.1002/1097-0363(20010115)35:1<93::AID-FLD85>3.0.CO;2-G
Esmaily Moghadam, M., Y. Bazilevs, T.-Y. Hsia, I. E. Vignon-Clementel, and A. L. Marsden. A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations. Comput. Mech. 48(3):277–291, 2011.
doi: 10.1007/s00466-011-0599-0
Jansen, K. E., C. H. Whiting, and G. M. Hulbert. A generalized-[Formula: see text] method for integrating the filtered Navier-Stokes equations with a stabilized finite element method. Comput. Methods Appl. Mech. Eng. 190(3–4):305–319, 2000.
doi: 10.1016/S0045-7825(00)00203-6
Arbia, G., I. E. Vignon-Clementel, T.-Y. Hsia, and J.-F. Gerbeau. Modified Navier-Stokes equations for the outflow boundary conditions in hemodynamics. Eur. J. Mech. B-Fluids. 60:175–188, 2016.
doi: 10.1016/j.euromechflu.2016.06.001
Garcia, J., A. J. Barker, and M. Markl. The role of imaging of flow patterns by 4D flow MRI in aortic stenosis. JACC: Cardiovasc. Imaging. 12(2):252–266, 2019.
pubmed: 30732721
Saikrishnan, N., L. Mirabella, and A. P. Yoganathan. Bicuspid aortic valves are associated with increased wall and turbulence shear stress levels compared to trileaflet aortic valves. Biomech Model Mechanobiol. 14(3):577–588, 2015.
doi: 10.1007/s10237-014-0623-3 pubmed: 25262451
Jayendiran, R., F. Condemi, S. Campisi, M. Viallon, P. Croisille, and S. Avril. Computational prediction of hemodynamical and biomechanical alterations induced by aneurysm dilatation in patient-specific ascending thoracic aortas. Int. J. Numer. Methods Biol. 36(6):3326, 2020.
doi: 10.1002/cnm.3326
Hoeijmakers, M., I. Waechter-Stehle, J. Weese, and F. Van de Vosse. Combining statistical shape modeling, CFD, and meta-modeling to approximate the patient-specific pressure-drop across the aortic valve in real-time. Int. J. Numer. Methods Biol. 36(10):3387, 2020.
doi: 10.1002/cnm.3387
Liu, J., J. A. Shar, and P. Sucosky. Wall shear stress directional abnormalities in BAV aortas: toward a new hemodynamic predictor of aortopathy? Front. Physiol. 9:993, 2018.
doi: 10.3389/fphys.2018.00993 pubmed: 30154723 pmcid: 6102585
Lenz, A., J. Petersen, C. Riedel, J. M. Weinrich, H. Kooijman, B. P. Schoennagel, G. Adam, Y. von Kodolitsch, H. Reichenspurner, E. Girdauskas, et al. 4d flow cardiovascular magnetic resonance for monitoring of aortic valve repair in bicuspid aortic valve disease. J. Cardiovasc. Magn. Reson. 22:1–10, 2020.
doi: 10.1186/s12968-020-00608-0
Qin, J. J., P. Obeidy, M. Gok, A. Gholipour, and S. M. Grieve. 4d-flow MRI derived wall shear stress for the risk stratification of bicuspid aortic valve aortopathy: a systematic review. Front. Cardiovasc. Med. 9:1075833, 2022.
doi: 10.3389/fcvm.2022.1075833 pubmed: 36698944
Lorenz, R., J. Bock, A. Barker, F. von Knobelsdorff-Brenkenhoff, W. Wallis, J. Korvink, M. Bissell, J. Schulz-Menger, and M. Markl. 4d flow magnetic resonance imaging in bicuspid aortic valve disease demonstrates altered distribution of aortic blood flow helicity. Magn. Resonan. Med. 71(4):1542–1553, 2014.
doi: 10.1002/mrm.24802
Mahadevia, R., A. J. Barker, S. Schnell, P. Entezari, P. Kansal, P. W. Fedak, S. C. Malaisrie, P. McCarthy, J. Collins, J. Carr, et al. Bicuspid aortic cusp fusion morphology alters aortic three-dimensional outflow patterns, wall shear stress, and expression of aortopathy. Circulation. 129(6):673–682, 2014.
doi: 10.1161/CIRCULATIONAHA.113.003026 pubmed: 24345403
Kalinowski, M. E., M. Szulik, S. Pawlak, B. Rybus-Kalinowska, M. Zembala, Z. Kalarus, and T. Kukulski. The impact of the aortic cusps fusion pattern and valve disease severity on the aortic wall mechanics in patients with bicuspid aortic valve. Int. J. Cardiovasc. Imaging. 36:1429–1436, 2020.
doi: 10.1007/s10554-020-01838-0 pubmed: 32303878 pmcid: 7381436
Vignali, E., E. Gasparotti, S. Celi, and S. Avril. Fully-coupled FSI computational analyses in the ascending thoracic aorta using patient-specific conditions and anisotropic material properties. Front. Physiol. 12:1740, 2021.
doi: 10.3389/fphys.2021.732561
Calò, K., K. Capellini, G. De Nisco, V. Mazzi, E. Gasparotti, D. Gallo, S. Celi, and U. Morbiducci. Impact of wall displacements on the large-scale flow coherence in ascending aorta. J. Biomech. 154:111620, 2023.
doi: 10.1016/j.jbiomech.2023.111620 pubmed: 37178494

Auteurs

Alessandro Mariotti (A)

Civil and Industrial Engineering Department, University of Pisa, Largo Lucio Lazzarino, 2, 56122, Pisa, Italy.

Simona Celi (S)

BioCardioLab, Bioengineering Unit, Heart Hospital, Fondazione CNR - Regione Toscana G. Monasterio, Via Aurelia Sud, 54100, Massa, Italy. s.celi@ftgm.it.

Maria Nicole Antonuccio (MN)

BioCardioLab, Bioengineering Unit, Heart Hospital, Fondazione CNR - Regione Toscana G. Monasterio, Via Aurelia Sud, 54100, Massa, Italy.

Maria Vittoria Salvetti (MV)

Civil and Industrial Engineering Department, University of Pisa, Largo Lucio Lazzarino, 2, 56122, Pisa, Italy.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH