5-Aminovaleric acid betaine predicts impaired glucose metabolism and diabetes.
Journal
Nutrition & diabetes
ISSN: 2044-4052
Titre abrégé: Nutr Diabetes
Pays: England
ID NLM: 101566341
Informations de publication
Date de publication:
20 09 2023
20 09 2023
Historique:
received:
21
02
2023
accepted:
29
08
2023
revised:
18
08
2023
medline:
22
9
2023
pubmed:
21
9
2023
entrez:
20
9
2023
Statut:
epublish
Résumé
5-Aminovaleric acid betaine (5-AVAB) has recently been identified as a diet and microbial-dependent factor inducing obesity and hepatic steatosis in mice fed a Western diet. Accumulating evidence suggests a role in metabolic dysfunction associated with obesity, diabetes, and fatty liver disease. However, whether 5-AVAB plays a role in human disease is unclear, and human data are sparse. We measured circulating 5-AVAB serum levels in 143 individuals with overweight or obesity participating in a randomized intervention study (NCT00850629) investigating the long-term effect of a weight maintenance strategy after diet-induced weight reduction. Higher 5-AVAB serum levels correlate with worse estimates of obesity, glucose metabolism, and hepatic steatosis after weight loss. Furthermore, higher 5-AVAB levels after weight loss independently predict detrimental changes in glucose metabolism 18 months after the successful weight reduction. Our human data supports previous findings in rodents indicating a relevant, potentially disadvantageous function of 5-AVAB in the context of metabolic dysbalance.
Sections du résumé
BACKGROUND
5-Aminovaleric acid betaine (5-AVAB) has recently been identified as a diet and microbial-dependent factor inducing obesity and hepatic steatosis in mice fed a Western diet. Accumulating evidence suggests a role in metabolic dysfunction associated with obesity, diabetes, and fatty liver disease. However, whether 5-AVAB plays a role in human disease is unclear, and human data are sparse.
METHODS
We measured circulating 5-AVAB serum levels in 143 individuals with overweight or obesity participating in a randomized intervention study (NCT00850629) investigating the long-term effect of a weight maintenance strategy after diet-induced weight reduction.
RESULTS
Higher 5-AVAB serum levels correlate with worse estimates of obesity, glucose metabolism, and hepatic steatosis after weight loss. Furthermore, higher 5-AVAB levels after weight loss independently predict detrimental changes in glucose metabolism 18 months after the successful weight reduction.
CONCLUSION
Our human data supports previous findings in rodents indicating a relevant, potentially disadvantageous function of 5-AVAB in the context of metabolic dysbalance.
Identifiants
pubmed: 37730732
doi: 10.1038/s41387-023-00245-3
pii: 10.1038/s41387-023-00245-3
pmc: PMC10511423
doi:
Substances chimiques
5-aminovaleric acid
660-88-8
Betaine
3SCV180C9W
Glucose
IY9XDZ35W2
Banques de données
ClinicalTrials.gov
['NCT00850629']
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
17Informations de copyright
© 2023. Springer Nature Limited.
Références
Global Health Estimates 2020. Deaths by cause, age, sex, by country and by region, 2000–2019. Geneva, World Health Organization; 2020.
Scholze J, Alegria E, Ferri C, Langham S, Stevens W, Jeffries D, et al. Epidemiological and economic burden of metabolic syndrome and its consequences in patients with hypertension in Germany, Spain and Italy; a prevalence-based model. BMC Public Health. 2010;10:1–12.
doi: 10.1186/1471-2458-10-529
Schwarz P, Reimann M, Li J, Bergmann A, Licinio J, Wong M-L, et al. The metabolic syndrome—a global challenge for prevention. Horm Metab Res. 2007;39:777–80.
doi: 10.1055/s-2007-990312
pubmed: 17992630
Haikonen R, Karkkainen O, Koistinen V, Hanhineva K. Diet- and microbiota-related metabolite, 5-aminovaleric acid betaine (5-Avab), in health and disease. Trends Endocrinol Metab. 2022;33:463–80. https://doi.org/10.1016/j.tem.2022.04.004 .
doi: 10.1016/j.tem.2022.04.004
pubmed: 35508517
Servillo L, D’Onofrio N, Giovane A, Casale R, Cautela D, Castaldo D, et al. Ruminant meat and milk contain Δ-valerobetaine, another precursor of trimethylamine N-oxide (Tmao) like Γ-butyrobetaine. Food Chem. 2018;260:193–9. https://doi.org/10.1016/j.foodchem.2018.03.114 .
doi: 10.1016/j.foodchem.2018.03.114
pubmed: 29699662
Salzano A, Cotticelli A, Marrone R, D’Occhio MJ, D’Onofrio N, Neglia G, et al. Effect of breeding techniques and prolonged post dry aging maturation process on biomolecule levels in raw buffalo meat. Vet Sci 2021;8. https://doi.org/10.3390/vetsci8040066 .
Kärkkäinen O, Lankinen MA, Vitale M, Jokkala J, Leppänen J, Koistinen V, et al. Diets rich in whole grains increase betainized compounds associated with glucose metabolism. Am J Clin Nutr. 2018;108:971–9. https://doi.org/10.1093/ajcn/nqy169 .
doi: 10.1093/ajcn/nqy169
pubmed: 30256894
Liu KH, Owens JA, Saeedi B, Cohen CE, Bellissimo MP, Naudin C, et al. Microbial metabolite delta-valerobetaine is a diet-dependent obesogen. Nat Metab. 2021;3:1694–705. https://doi.org/10.1038/s42255-021-00502-8 .
doi: 10.1038/s42255-021-00502-8
pubmed: 34931082
pmcid: 8711632
Mai K, Brachs M, Leupelt V, Jumpertz-von Schwartzenberg R, Maurer L, Grüters-Kieslich A, et al. Effects of a combined dietary, exercise and behavioral intervention and sympathetic system on body weight maintenance after intended weight loss: results of a Randomized Controlled Trial. Metabolism. 2018;83:60–7. https://doi.org/10.1016/j.metabol.2018.01.003 .
doi: 10.1016/j.metabol.2018.01.003
pubmed: 29360493
Hudak S, Huber P, Lamprinou A, Fritsche L, Stefan N, Peter A, et al. Reproducibility and discrimination of different indices of insulin sensitivity and insulin secretion. PLoS ONE. 2021;16:e0258476.
doi: 10.1371/journal.pone.0258476
pubmed: 34679116
pmcid: 8549015
Fischer A, Fisher E, Möhlig M, Schulze M, Hoffmann K, Weickert MO, et al. Kcnj11 E23k affects diabetes risk and is associated with the disposition index: results of two independent German cohorts. Diabetes Care. 2008;31:87–9. https://doi.org/10.2337/dc07-1157 .
doi: 10.2337/dc07-1157
pubmed: 17898091
Faerch K, Brøns C, Alibegovic A, Vaag A. The disposition index: adjustment for peripheral vs. hepatic insulin sensitivity? J Physiol. 2010;588:759–64.
doi: 10.1113/jphysiol.2009.184028
pubmed: 20100741
pmcid: 2834935
Wong VW-S, Adams LA, de Lédinghen V, Wong GL-H, Sookoian S. Noninvasive biomarkers in Nafld and Nash—current progress and future promise. Nat Rev Gastroenterol Hepatol. 2018;15:461–78. https://doi.org/10.1038/s41575-018-0014-9 .
doi: 10.1038/s41575-018-0014-9
pubmed: 29844588
Li L, Spranger L, Soll D, Beer F, Brachs M, Spranger J, et al. Metabolic impact of weight loss induced reduction of adipose Ace-2—potential implication in Covid-19 infections? Metabolism. 2020;113:154401.
doi: 10.1016/j.metabol.2020.154401
pubmed: 33065163
pmcid: 7552972
Adam J, Brandmaier S, Leonhardt J, Scheerer MF, Mohney RP, Xu T, et al. Metformin effect on nontargeted metabolite profiles in patients with type 2 diabetes and in multiple murine tissues. Diabetes. 2016;65:3776–85. https://doi.org/10.2337/db16-0512 .
doi: 10.2337/db16-0512
pubmed: 27621107
von Schwartzenberg RJ, Bisanz JE, Lyalina S, Spanogiannopoulos P, Ang QY, Cai J, et al. Caloric restriction disrupts the microbiota and colonization resistance. Nature. 2021;595:272–7. https://doi.org/10.1038/s41586-021-03663-4 .
doi: 10.1038/s41586-021-03663-4
Heinsen FA, Fangmann D, Muller N, Schulte DM, Ruhlemann MC, Turk K, et al. Beneficial effects of a dietary weight loss intervention on human gut microbiome diversity and metabolism are not sustained during weight maintenance. Obes Facts. 2016;9:379–91. https://doi.org/10.1159/000449506 .
doi: 10.1159/000449506
pubmed: 27898428
pmcid: 5644845
Louis S, Tappu RM, Damms-Machado A, Huson DH, Bischoff SC. Characterization of the gut microbial community of obese patients following a weight-loss intervention using whole metagenome shotgun sequencing. PLoS ONE. 2016;11:e0149564 https://doi.org/10.1371/journal.pone.0149564 .
doi: 10.1371/journal.pone.0149564
pubmed: 26919743
pmcid: 4769288
Li L, Spranger L, Stobaus N, Beer F, Decker AM, Wernicke C, et al. Fetuin-B, a potential link of liver-adipose tissue cross talk during diet-induced weight loss-weight maintenance. Nutr Diabetes. 2021;11:31 https://doi.org/10.1038/s41387-021-00174-z .
doi: 10.1038/s41387-021-00174-z
pubmed: 34611132
pmcid: 8492646
Koistinen VM, Mattila O, Katina K, Poutanen K, Aura AM, Hanhineva K. Metabolic profiling of sourdough fermented wheat and rye bread. Sci Rep. 2018;8:5684 https://doi.org/10.1038/s41598-018-24149-w .
doi: 10.1038/s41598-018-24149-w
pubmed: 29632321
pmcid: 5890289
Ye EQ, Chacko SA, Chou EL, Kugizaki M, Liu S. Greater whole-grain intake is associated with lower risk of type 2 diabetes, cardiovascular disease, and weight gain. J Nutr. 2012;142:1304–13.
doi: 10.3945/jn.113.179473
pubmed: 22649266
pmcid: 6498460
Vuong HE, Pronovost GN, Williams DW, Coley EJL, Siegler EL, Qiu A, et al. The maternal microbiome modulates fetal neurodevelopment in mice. Nature. 2020;586:281–6. https://doi.org/10.1038/s41586-020-2745-3 .
doi: 10.1038/s41586-020-2745-3
pubmed: 32968276
pmcid: 7554197
Jaaskelainen T, Karkkainen O, Jokkala J, Litonius K, Heinonen S, Auriola S, et al. A non-targeted LC–MS profiling reveals elevated levels of carnitine precursors and trimethylated compounds in the cord plasma of pre-eclamptic infants. Sci Rep. 2018;8:14616 https://doi.org/10.1038/s41598-018-32804-5 .
doi: 10.1038/s41598-018-32804-5
pubmed: 30279541
pmcid: 6168522
Jaaskelainen T, Karkkainen O, Jokkala J, Klavus A, Heinonen S, Auriola S, et al. A non-targeted LC–MS metabolic profiling of pregnancy: longitudinal evidence from healthy and pre-eclamptic pregnancies. Metabolomics. 2021;17:20 https://doi.org/10.1007/s11306-020-01752-5 .
doi: 10.1007/s11306-020-01752-5
pubmed: 33515103
pmcid: 7846510